# ROCKWOOL® Red Book

Comprehensive ROCKWOOL solutions guide for facades, walls, floors and roofs.





# Navigating the **ROCKWOOL** Red Book

As an interactive guide, the ROCKWOOL Red Book provides direct access to hundreds of digital resources, helping to save you time by simplifying the specification of our facade, wall, floor and roof solutions.

Through the interactive product pages, navigate directly to:

- Product datasheets
- NBS Clauses

Simply look for hyperlinked text.

On each product page, a series of icons highlight where further technical documentation or calculation tools are available:



Acoustic calculator

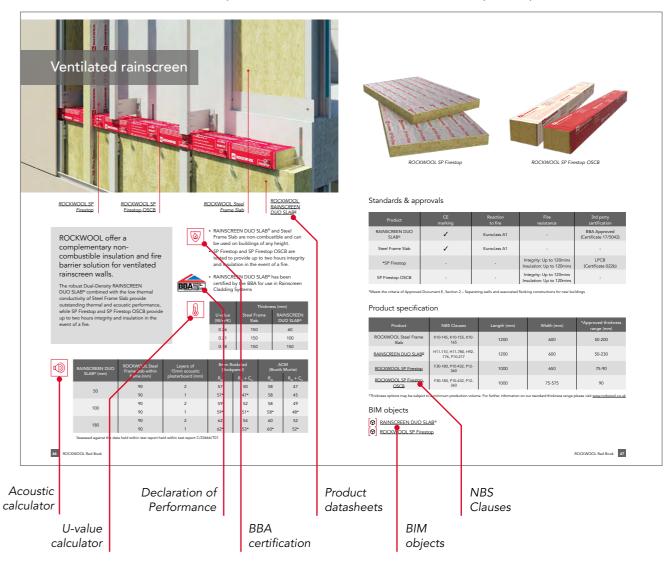


U-value calculator



Declaration of Performance




BIM objects



**BBA** certification

To navigate back to the contents section, click on: ROCKWOOL Red Book at the bottom of every page.

The following shows where you can typically find each of the digital resources on the product pages:



Wherever further technical content is available, this will be denoted by a hyperlink. Throughout the guide you will also find additional practical resources and guides which will be indicated by the following icon:



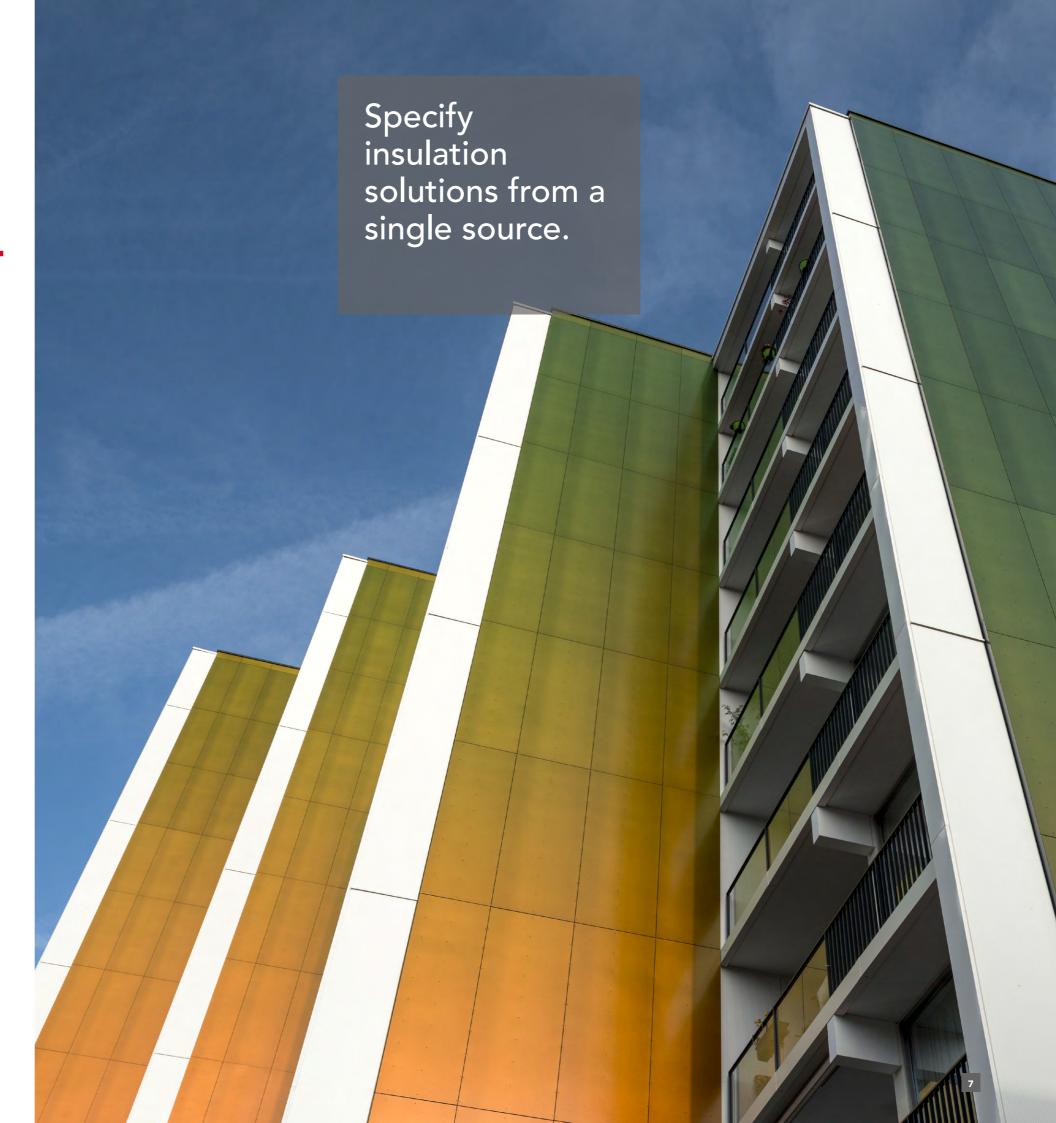
If you need additional assistance with specifying ROCKWOOL solutions, please email technical.solutions@rockwool.co.uk or call 01656 868 490



# Contents

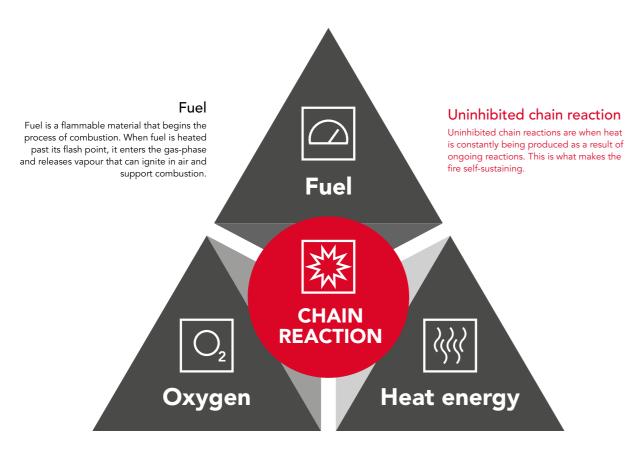
|                                                                | Page No.              |
|----------------------------------------------------------------|-----------------------|
| Introducing the ROCKWOOL Red Book Fire                         | <u>6</u>              |
| <ul> <li>Understanding fire properties</li> </ul>              | 8                     |
| <ul> <li>Understanding reaction to fire</li> </ul>             | <u>10</u>             |
| <ul> <li>Understanding fire resistance</li> </ul>              | <u>12</u>             |
| <ul> <li>Understanding fire regulations</li> </ul>             | <u>14</u>             |
| Thermal                                                        |                       |
| Understanding thermal                                          | <u>16</u>             |
| <ul> <li>Understanding thermal regulations</li> </ul>          | <u>18</u>             |
| Acoustics                                                      |                       |
| <ul> <li>Understanding acoustics</li> </ul>                    | <u>20</u>             |
| <ul> <li>Understanding acoustic regulations</li> </ul>         | <u>22</u>             |
| <ul> <li>Built upon responsible business principles</li> </ul> | <u>24</u>             |
| Sustainability                                                 |                       |
| <ul> <li>Build to last</li> </ul>                              | <u>26</u>             |
| ROCKWOOL - the complete solution                               | <u>28</u>             |
| Technical tools and resources                                  | <u>30</u>             |
| Solutions for every application                                | <u>32</u>             |
| Facade & external wall solutions                               |                       |
| ETICS wall systems                                             | <u>36</u>             |
| Masonry cavity walls - full fill                               | <u>38</u>             |
| Masonry cavity walls - partial fill                            | <u>40</u>             |
| Timber frame walls                                             | <u>42</u>             |
| Steel framed walls                                             | <u>44</u>             |
| Separating walls                                               | <u>46</u>             |
| Ventilated rainscreen                                          | <u>48</u>             |
| Twin skin metal cladding                                       | <u>50</u>             |
| Flat roof solutions                                            |                       |
| HARDROCK® Multi-Fix DD                                         | <u>54</u>             |
| HARDROCK® TRB                                                  | <u></u>               |
| HARDROCK® Terrace                                              | <u>—</u><br><u>58</u> |
| Pitched roof solutions                                         | _                     |
| Cold pitched roofs                                             | 60                    |
| Warm pitched roofs                                             | <u>62</u>             |
|                                                                | <u>52</u>             |
| Floor solutions                                                |                       |
| Ground floors - ground bearing slab                            | <u>66</u>             |
| Ground floors - suspended beam & block                         | <u>67</u>             |
| Ground floors - suspended timber                               | <u>68</u>             |
| Separating floors - acoustic timber                            | <u>70</u>             |
| Internal walls and floors                                      |                       |
| Internal walls and floors - timber and metal stud              | <u>74</u>             |
| Case studies                                                   | <u>76</u>             |
| The CPD programme                                              | <u>78</u>             |
| Interactive City                                               | <u>81</u>             |
| Additional resources                                           | <u>82</u>             |
| Legal disclaimer                                               | <u>83</u>             |
|                                                                |                       |

# Introducing the ROCKWOOL Red Book


Welcome to the ROCKWOOL Red Book – your comprehensive guide to specifying insulation solutions that perform in every building application.

The ROCKWOOL Red Book has been developed to provide a detailed technical resource which supports the specification of insulation solutions from a single source.

Saving time and simplifying the identification of insulation for through-wall, floor and roof constructions, the ROCKWOOL Red Book will guide you through key technical criteria and relevant performance data – helping to inform robust and compliant designs which simultaneously address fire, thermal, acoustic and sustainable requirements.


#### Use the ROCKWOOL Red Book to:

- Enhance your understanding of the current building regulations in relation to thermal, acoustic and fire performance – including Euroclass ratings – and build in-depth knowledge on the sustainable credentials of stone wool insulation.
- Easily navigate to the relevant construction sections to determine the most suitable ROCKWOOL solution to insulate through-wall, through floor or through-roof build-ups
- Access technical resources such as free online software and calculation tools to assist with modelling building performance and regulation compliance.
- Explore ROCKWOOL's essential construction CPD programme and select the sessions that will best enhance your building regulation and specification expertise.



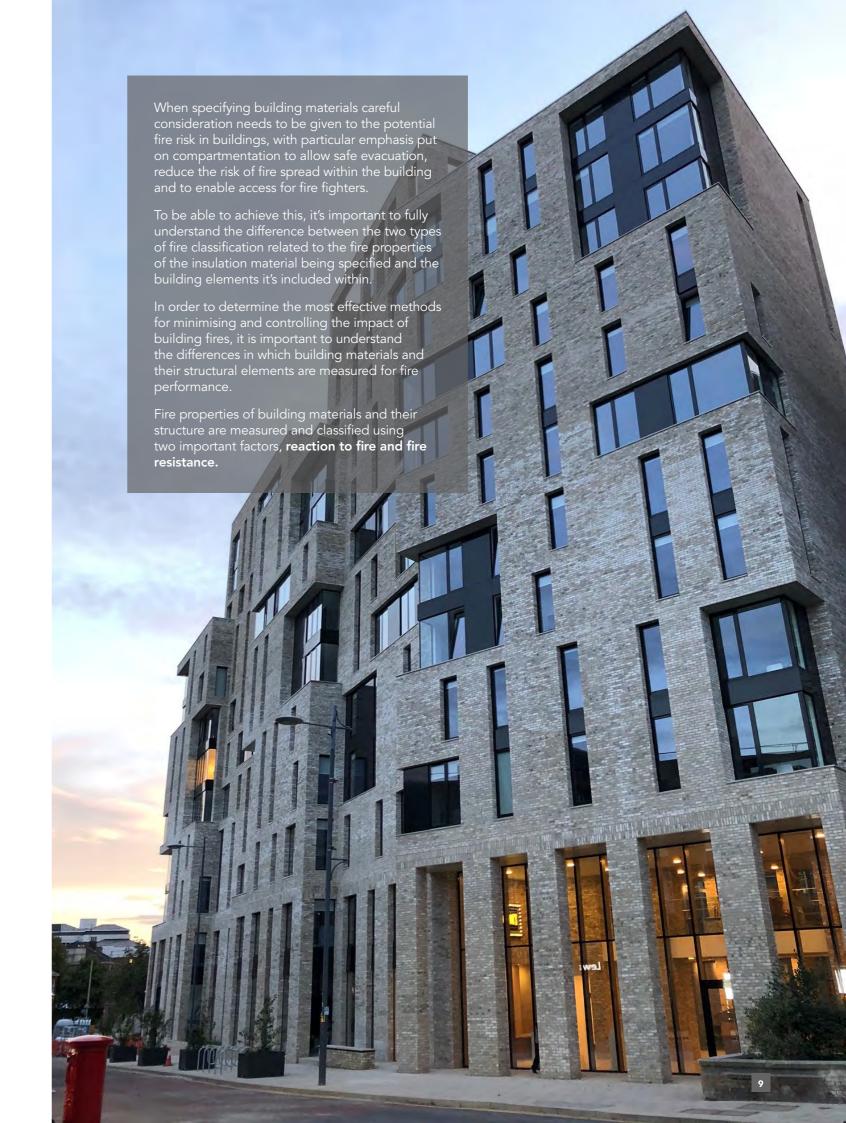


# Understanding fire properties



#### Oxygen

Oxygen supports burning due to oxidation. This is when gases released by fuel heat up, break apart, and recombine with oxygen. This is what causes burning to begin.


#### Heat energy

Heat energy is produced during combustion because the reaction is exothermic. Since these reactions are ongoing, combustion releases more than enough heat to make the fire self-perpetuating.

### Removing one of the elements of the fire triangle will stop a fire.

Not all insulation materials react in the same way to fire and heat. A material's combustibility is determined by measuring results from a series of 'Reaction to Fire' tests which cover these key characteristics.

Only insulation materials with the lowest reaction to fire can achieve Euroclass A1 or A2-s1, d0 and will not, or significantly not, contribute to a fire. Materials deemed as combustible have the potential to be ignited and burned therefore a potential source of fuel in a fire.



# Understanding reaction to fire

This evaluates the contribution a material can make to fire growth and development which is particularly important in the early stages of a fire. The reaction to fire classification of building insulation is determined through a series of tests which measure performance against several key characteristics.



#### Heat release

Heat energy released during combustion



#### Character changes

Does the material melt, drip, or char?

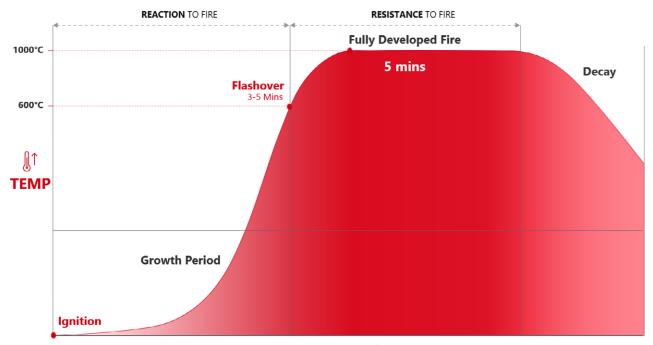


#### Flame spread

The rate fire spreads across a



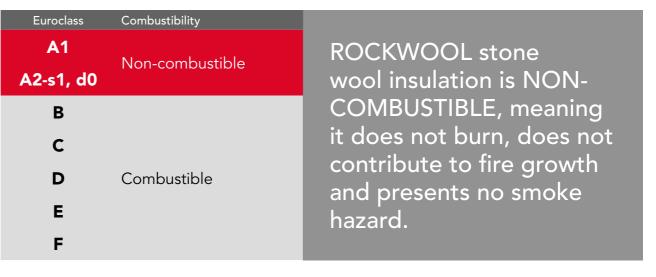
#### Smoke emission


The level of smoke produced when



#### Ignitability

Does the material catch fire?


#### Stages of Fire Development



#### TIME $\circlearrowleft \rightarrow$

#### The Euroclass System

The Euroclass Reaction to Fire system classifies building products in accordance with BS EN 13501-1. Using a product's Euroclass rating as guidance is the only way to determine a product's full Reaction to Fire performance. Products classified A1 or A2-s1, d0 are considered non-combustible and those classified B – F are considered combustible.

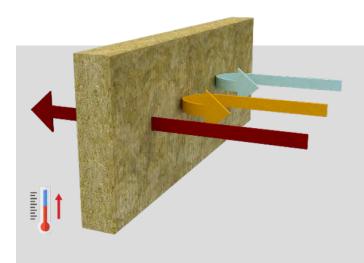


#### Important points to remember...

- To be sure of a product's Euroclass rating, simply check its Declaration of Performance (DOP)
- All ROCKWOOL DoP's are available online at www.rockwool.com/uk/dop

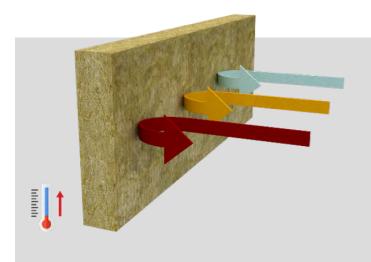


| Essential Characteristics                     | Requirement clauses in this European Standard | Level and/or classes | Declared value |
|-----------------------------------------------|-----------------------------------------------|----------------------|----------------|
| Reaction to fire<br>Euroclass characteristics | 4.2.6 Reaction to fire                        | Euroclasses          | A1             |


# Understanding fire resistance

This measures the ability of a building structure or compartment to resist and prevent the passage of fire from one distinct area to another for a given time period.

In order to determine the level of fire resistance achieved by a product or system it must be tested for the application it is intended for and proven to perform for the fire resistance period required.


A typical fire resistance test will evaluate 3 key areas of performance:

In addition to measuring integrity and insulation ratings, a fire resistance test can also be used to determine the stability (R) of load bearing building elements.



### Integrity (E)

The ability of a separating element of building construction; when exposed to fire on one side, to prevent the passage of flames and hot gasses passing through, and creating the occurrence of flames on the unexposed side.



#### Insulation (I)

The ability to maintain integrity without developing temperatures on its external surface, outside the compartment in which the fire is present, which exceed:

140°C as an average value above ambient and/or 180°C as a maximum value above ambient at any given point.

# A combined approach to minimise risk

An approach to building design that increases the use of non-combustible building materials and ensures the use of appropriately tested passive fire protection measures is undoubtedly an effective method of slowing fire spread. Fully developed fires can occur within 5 minutes of ignition therefore it is vital that occupants are allowed enough time to escape safely, and fire fighters are given enough time to manage the incident.

From section 3,3 of Hackitt review:

Buildings are considered as a system, which in order to be safe requires every aspect of design, construction, refurbishment and maintenance to prioritise safety.



# Understanding fire regulations

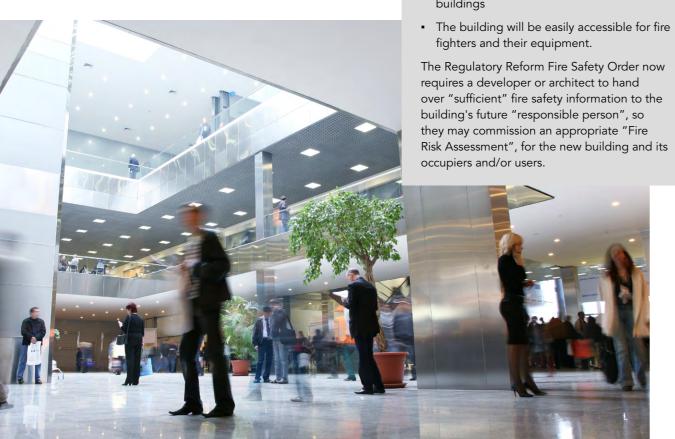
There are different regulatory frameworks covering different phases of construction of a building. They are primarily concerned with life safety.

Fire safety of buildings is covered by the following:

- During Construction The Construction (Design and Management) Regulations 2015
- Performance of the Building Approved Document B
- Management during occupation and use Regulatory Reform (Fire Safety) Order
- Materials and workmanship Approved Document 7

Approved Documents and Technical Guidance Documents offer guidance on how to comply with the Building Regulations across the UK and Ireland.

Technical guidance -Approved Document B (fire safety)


Volume 1: Dwelling houses &

Volume 2: Buildings other than dwelling houses

This practical guidance considers various aspects of fire safety in the construction of buildings:

- Requires safe means of escape from the
- Requires the stability of a building to be maintained in a fire, both internally and
- Fire and smoke will be prevented from spreading to concealed spaces in a building's
- Externally the external walls and roof will resist spread of fire to walls and roofs of other
- fighters and their equipment.

The Regulatory Reform Fire Safety Order now over "sufficient" fire safety information to the Risk Assessment", for the new building and its



#### Scotland

The standards and guidance in the fire safety section of the Technical Handbook (domestic) and Technical Handbook (nondomestic) are designed to work together to provide a balanced approach to fire safety. The purpose of the guidance in Section 2 is to achieve the following objectives in the case of an outbreak of fire within the building:

- To protect life
- To assist the fire and rescue services
- To further the achievement of sustainable development.

Areas covered include compartmentation, structural protection, cavities, internal linings and more.

#### Northern Ireland

Technical Booklet E (Fire Safety) is one of a series that has been prepared by the Department of Finance and Personnel (the Department) for the purpose of providing practical guidance with respect to the technical requirements of the Building Regulations (Northern Ireland) 2012 (the Building Regulations) and covers the following:

- Means of escape
- Internal fire spread (linings)
- Internal fire spread (structure)
- External fire spread
- Facilities and access for the Fire and Rescue Service

### Republic of Ireland (ROI)

The provisions set out in Sections B1 to B5 of the Technical Guidance Document B, deal with different aspects of fire safety. The five sections are:

- Means of escape in case of fire
- Internal fire spread (linings)
- Internal fire spread (structure)
- External fire spread
- Access and facilities for the fire service

#### Wales

Approved Document B gives guidance for fire safety compliance with the Building Regulations for building work carried out in Wales. It has been published in two volumes. Volume 1 deals solely with dwelling houses, while Volume 2 deals with all other types of building covered by the Building Regulations.

#### **England**

Approved Document B addresses fire safety and has been split into two volumes. Volume 1 deals with dwelling houses and Volume 2 deals with buildings other than dwelling houses. It covers the following:

- Means of warning and escape
- Internal fire spread (linings)
- Internal fire spread (structure)
- External fire spread
- Access and facilities for the fire service



# Understanding thermal

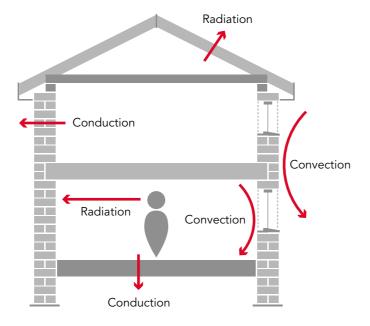
In practical terms, thermal is defined as relating to, caused by, or generating heat or increased temperature.

When constructing buildings, the main thermal design consideration is to maximise energy efficiency and occupant comfort by effectively controlling heat transfer.

Heat transfer occurs in one of three ways:

#### Conduction

The passage of heat through or within a material because of direct contact.


In conduction, the hottest object is the heat source, and the coolest is the heat sink. For example, heat within a house will travel from the warm side of the wall outwards to the cold side of the wall.

#### Convection

The transfer of heat via liquids or gases. For example, if you blow over a hot substance such as hot food, heat from the substance transfers to the air particles, cooling the hot substance and slightly warming the air. Therefore, gaps around windows or doors can reduce the internal temperature.

#### Radiation

Radiated heat goes out in all directions, unnoticed until it strikes an object. Radiation is a method of heat transfer that does not rely upon any contact between the heat source and the heated object, which means heat can easily be transmitted though empty space.



### Measuring thermal

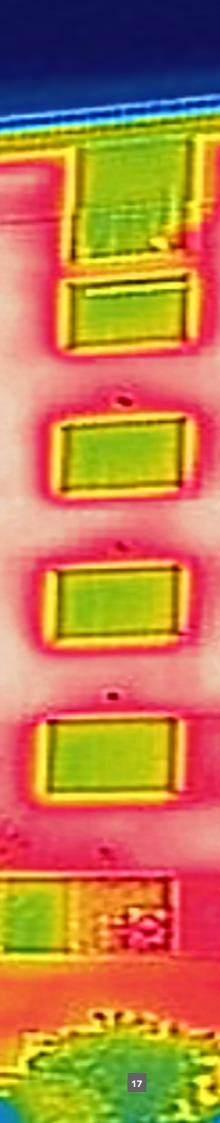
The unit of quantity of heat is the joule (J). Heat flow may be expressed as joules per second (J/s), but as a heat flow of one joule per second equals one watt, the unit watt (W) is adopted for practical purposes in calculating U-values.

The following summarises the main measurements to consider when evaluating the thermal performance of products in a building.

| Properties            | Unit                 | Expressed as                                 | Measuring                                                         | Interpreting                                                            |
|-----------------------|----------------------|----------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|
| Thermal transmittance | U-value              | W/m²K (Watts<br>per square<br>metre, Kelvin) | Rate of heat loss<br>of a building<br>component.                  | The lower the U-value, the more efficient the construction.             |
| Thermal conductivity  | k or lambda<br>value | W/mK (Watts<br>per metre<br>Kelvin)          | Rate at<br>which heat is<br>transmitted<br>through a<br>material. | The lower the conductivity, the more thermally efficient a material is. |
| Thermal resistance    | R value              | m²K/W (metre<br>square Kelvin<br>per watt)   | Rate at which a<br>material resists<br>heat flow.                 | The higher the<br>R-value, the<br>more efficient<br>the insulation.     |

### Controlling thermal transfer

Heat always flows from warmer to cooler surfaces until the temperatures of both surfaces become equal. As insulators reduce the flow of heat, materials which insulate are one of the most effective methods of controlling heat transfer.


For construction purposes a material is defined as insulating if its thermal conductivity is less than 0.065 W/mK.

### Importance of thermal performance

In many homes, insulation is the most practical and cost-effective way to make a house more energy efficient, keeping it cooler in summer and warmer in winter. In some cases, this will save up to 80% in heating and cooling losses.

This results in a reduced environmental impact by reducing the carbon footprint and minimising the amount of greenhouse gasses released into the environment.

In addition to building owners seeking to reduce energy costs and achieve a comfortable interior environment, legislation is becoming increasingly stringent in relation to controlling energy consumption. This is reflected in the various building regulations which govern fuel and power conservation in both domestic and non-domestic properties.





## Building regulations - Thermal

# Understanding thermal regulations

Limiting heat gain and heat loss through the building fabric is a fundamental requirement of the Building Regulations and critical for maintaining energy efficiency. The energy performance and carbon emissions of buildings are assessed using one of two calculations depending on the building type:

- 1. SAP (Standard Assessment Procedure) Domestic
- 2. SBEM (Simplified Building Energy Modelling) Non-domestic

Fundamentals of both are the same. They calculate energy cost and carbon emissions for the purposes of demonstrating compliance with building regulations. Each of the calculations measure four criteria:

#### For SAP (domestic):

- The elements of structure
- The heating and hot water system
- The internal lighting
- The renewable technologies used in the home

#### For SBEM (non-domestic):

- Measuring the Building Emission Rate (BER) against the Target Emission Rate (TER)
- Assessing building fabric, HVAC systems, hot water and lighting for energy efficiency
- Demonstration of passive measures to limit solar gains during summer months
- Ensuring provisions are in place to enable energy efficient operation

Thermal regulations across England, Scotland, Wales, Northern Ireland and the Republic of Ireland can be split into two main categories with sub-sections as described below:

#### Conservation of fuel and power in dwellings

- New dwellings
- Existing dwellings: extensions
- Existing dwellings: refurbishment, renovation and thermal upgrade

#### Conservation of fuel and power in buildings other than dwellings

- New buildings other than dwellings
- Existing buildings other than dwellings:
- Existing buildings other than dwellings: refurbishment, renovation and thermal

The following tables provide a summary of the notional U-values as described within the following documents:

ADL1A (2013), ADL1B (2010), ADL2A (2013), ADL2B (2010) **England:** 

Scotland (Domestic / Non-domestic): Technical Handbook 2019 - Section 6

Wales: ADL1A (2014), ADL1B (2014), ADL2A (2014), ADL2B (2014)

Republic of Ireland: Technical Guidance Document L Northern Ireland (Booklet F1 / F2): Technical Booklet F1 & F2

#### Table 1a: Dwellings (new)

| Fabric<br>element | Part L1a 2013<br>(England) | Section 6 2019<br>(Scotland) | Part L1a 2014<br>(Wales) | Technical Guidance<br>Document L (Ireland) | Technical Booklet F1<br>(Northern Ireland) |
|-------------------|----------------------------|------------------------------|--------------------------|--------------------------------------------|--------------------------------------------|
| Wall              | 0.18 W/m <sup>2</sup> K    | 0.17 W/m <sup>2</sup> K      | 0.18 W/m <sup>2</sup> K  | 0.18 W/m <sup>2</sup> K                    | 0.20 W/m <sup>2</sup> K                    |
| Roof              | 0.13 W/m <sup>2</sup> K    | 0.11 W/m <sup>2</sup> K      | 0.13 W/m <sup>2</sup> K  | 0.16 W/m <sup>2</sup> K                    | 0.13 W/m <sup>2</sup> K                    |
| Floor             | 0.13 W/m <sup>2</sup> K    | 0.15 W/m <sup>2</sup> K      | 0.13 W/m <sup>2</sup> K  | 0.16 W/m <sup>2</sup> K                    | 0.20 W/m <sup>2</sup> K                    |
| Party wall        | 0.00 W/m <sup>2</sup> K    | 0.00 W/m <sup>2</sup> K      | 0.00 W/m <sup>2</sup> K  | -                                          | 0.20 W/m <sup>2</sup> K                    |

#### Table 1b: Dwellings (existing)

| Fabric<br>Element      |                      | a 2013<br>land)                                 | Section 6 2019<br>(Scotland) |                               | Part L1a 2014<br>(Wales) |                                                 | Technical<br>Guidance<br>Document<br>L (Ireland) | Technical<br>Booklet F1<br>(Northern<br>Ireland) |
|------------------------|----------------------|-------------------------------------------------|------------------------------|-------------------------------|--------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                        | Extension<br>(W/m²K) | Thermal<br>upgrade<br>(W/m²K)                   | *Extension<br>(W/m²K)        | Thermal<br>upgrade<br>(W/m²K) | Extension<br>(W/m²K)     | Thermal<br>upgrade<br>(W/m²K)                   | Thermal<br>upgrade<br>(W/m²K)                    | Thermal<br>upgrade<br>(W/m²K)                    |
| Wall                   | 0.28                 | 0.55 (cavity)<br>0.30 (external<br>or internal) | 0.22                         | 0.30                          | 0.21                     | 0.55 (cavity)<br>0.30 (external<br>or internal) | 0.55 (cavity)<br>0.35 (other)                    | 0.55 (cavity)<br>0.30 (other)                    |
| Pitched roof - ceiling | 0.16                 | 0.16                                            | 0.15                         | 0.25                          | 0.15                     | 0.16                                            | 0.16                                             | 0.16                                             |
| Pitched roof - rafter  | 0.18                 | 0.18                                            | 0.18                         | 0.25                          | 0.15                     | 0.18                                            | 0.25                                             | 0.18                                             |
| Flat roof              | 0.18                 | 0.18                                            | 0.18                         | 0.25                          | 0.15                     | 0.18                                            | 0.25                                             | 0.18                                             |
| Floor                  | 0.22                 | 0.25                                            | 0.18                         | 0.25                          | 0.18                     | 0.25                                            | 0.45                                             | 0.25                                             |

 $<sup>\</sup>star$  U-values quoted assume that the existing walls and roof are better than 0.70 and 0.35 respectively.

#### Table 2a: Buildings other than dwellings (new)

| Fabric<br>Element | Part L2a 2013<br>(England) | Section<br>(Scot        | 6 2019<br>land)         | Part L2a 2014<br>(Wales) | Technical Guidance<br>Document L (Ireland) | Technical Booklet F2<br>(Northern Ireland)                                           |
|-------------------|----------------------------|-------------------------|-------------------------|--------------------------|--------------------------------------------|--------------------------------------------------------------------------------------|
|                   |                            | Naturally<br>ventilated | Mechanically ventilated |                          |                                            |                                                                                      |
| Wall              | 0.26 W/m <sup>2</sup> K    | 0.23 W/m <sup>2</sup> K | 0.20 W/m <sup>2</sup> K | 0.26 W/m <sup>2</sup> K  | 0.21 W/m <sup>2</sup> K                    | 0.28 W/m <sup>2</sup> K                                                              |
| Roof              | 0.18 W/m <sup>2</sup> K    | 0.18 W/m <sup>2</sup> K | 0.16 W/m <sup>2</sup> K | 0.18 W/m <sup>2</sup> K  | 0.16 W/m²K - Pitched<br>0.20 W/m²K - Flat  | 0.16 W/m²K - Pitched (ceiling)<br>0.18 W/m²K - Pitched (rafter)<br>0.18 W/m²K - Flat |
| Floor             | 0.22 W/m <sup>2</sup> K    | 0.22 W/m <sup>2</sup> K | 0.20 W/m <sup>2</sup> K | 0.22 W/m <sup>2</sup> K  | 0.21 W/m²K                                 | 0.22 W/m²K                                                                           |

#### Table 2b: Buildings other than dwellings (existing)

| Fabric<br>Element      |                      | L2b 2013<br>ngland)                             |                       | 6 2019<br>land)               |                      | L2b 2014<br>Vales)                              | Technical<br>Guidance<br>Document L<br>(Ireland) | Technical<br>Booklet F2<br>(Northern<br>Ireland) |
|------------------------|----------------------|-------------------------------------------------|-----------------------|-------------------------------|----------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                        | Extension<br>(W/m²K) | Thermal<br>upgrade<br>(W/m²K)                   | *Extension<br>(W/m²K) | Thermal<br>upgrade<br>(W/m²K) | Extension<br>(W/m²K) | Thermal<br>upgrade<br>(W/m²K)                   | Thermal<br>upgrade<br>(W/m²K)                    | Thermal<br>upgrade<br>(W/m²K)                    |
| Wall                   | 0.28                 | 0.55 (cavity)<br>0.30 (external or<br>internal) | 0.25                  | 0.30                          | 0.26                 | 0.55 (cavity)<br>0.30 (external or<br>internal) | 0.55 (cavity)<br>0.30 (other)                    | 0.55 (cavity)<br>0.30 (other)                    |
| Pitched roof - ceiling | 0.16                 | 0.16                                            | 0.15                  | 0.25                          | 0.15                 | 0.16                                            | 0.16                                             | 0.16                                             |
| Pitched roof - rafter  | 0.18                 | 0.18                                            | 0.15                  | 0.25                          | 0.18                 | 0.18                                            | 0.25                                             | 0.18                                             |
| Flat roof              | 0.18                 | 0.18                                            | 0.15                  | 0.25                          | 0.18                 | 0.18                                            | 0.25                                             | 0.18                                             |
| Floor                  | 0.22                 | 0.25                                            | 0.20                  | 0.25                          | 0.22                 | 0.25                                            | 0.45                                             | 0.25                                             |

# Understanding acoustics

Sound is described as 'a disturbance in an elastic medium resulting in an audible sensation.' Noise is defined as 'unwanted sound' - more commonly referred to as 'nuisance noise'.

#### Measuring sound

Sound is measured in decibels (dB). The following scale depicts a range of sound levels as audible by people.



Intolerable

140dB (A) Aircraft engine



120dB (A) Jackhammer



100dB (A) Heavy traffic



80dB (A) Busy office



60dB (A) Library



40dB (A) Whispering



20dB (A) Ticking watch



OdB (A) Silence

Sources of sound or noise within a building fall

into one of two categories:

#### Airborne

Transmitted through the air and atmosphere. Typical examples include talking, sounds from radio and television or cars travelling down a road.

#### **Impact**

The physical impact on buildings or solid materials. Typical examples include footfall, doors banging, walking and furniture moving.

#### Controlling sound

When sound cannot be managed at the source, one of the most effective ways of controlling sound is to reduce its transfer. Sound reduction can take place from external sources into a building, through external walls and roofs, as well as between internal spaces with partitions, separating walls and floors.

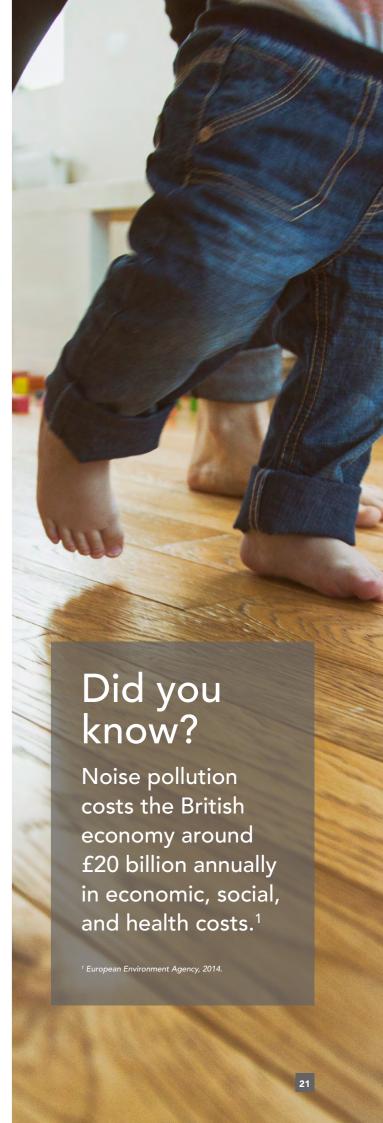
The ability of walls, floors or roofs to resist the passage of sound energy is determined by three factors:

- The sound absorbency of any cavities (airborne
- The area mass (kg/m²) of the separating element
- The structural isolation of elements within the element (impact sound)

The level of sound reduction achieved between spaces is also measured in dB.

When designing and constructing buildings that are fit for purpose, adequately controlling sound levels by reducing transfer is just as important for comfort as it is for regulation compliance.

### Importance of acoustics


Noise pollution is a major environmental problem which affects thousands of people living in UK towns and

With an ever-increasing demand for housing and the need for space efficiency many of today's residential units are built in close proximity to significant sources of noise which include; road traffic, railway networks, air traffic and even other construction sites.

As we move into inner cities our exposure and proximity to external noise sources increases significantly.

Exposure to high levels of noise affects everyone a little differently. Children in general are more sensitive to excessive levels of noise, along with the chronically ill or elderly people. Adults who work in especially noisy environments also experience higher levels of stress and fatigue. Disturbed sleep patterns due to noise pollution can lead to health problems which can be more serious for children as it can impair childhood development.

In the UK, acoustic standards in construction are governed by Approved Document E (England and Wales), Approved Document G (Northern Ireland), Technical Guidebook Domestic Section 5 (Scotland) and Technical Guidance Document E (Ireland).



# Understanding acoustic regulations

Acoustic requirements between UK countries and the Republic of Ireland whilst similar, do vary and it is important to ensure the appropriate regulations and guidance are followed. The correct regulatory requirements can be found for each country, in the following guidance documents:

- England & Wales Approved Document E
- Northern Ireland Approved Document G
- Scotland Technical Handbook Domestic: Section 5 (<u>Domestic</u> / <u>Non-domestic</u>)
- Republic of Ireland Technical Guidance Document E

Whilst notional values may differ, the fundamental requirements can be divided into two core areas:

- Separating constructions Protection against sound from other parts of the building and/or adjoining buildings.
- Single dwellings Protection within a single dwelling e.g. house or flat whether purpose-built or formed by material change of use.

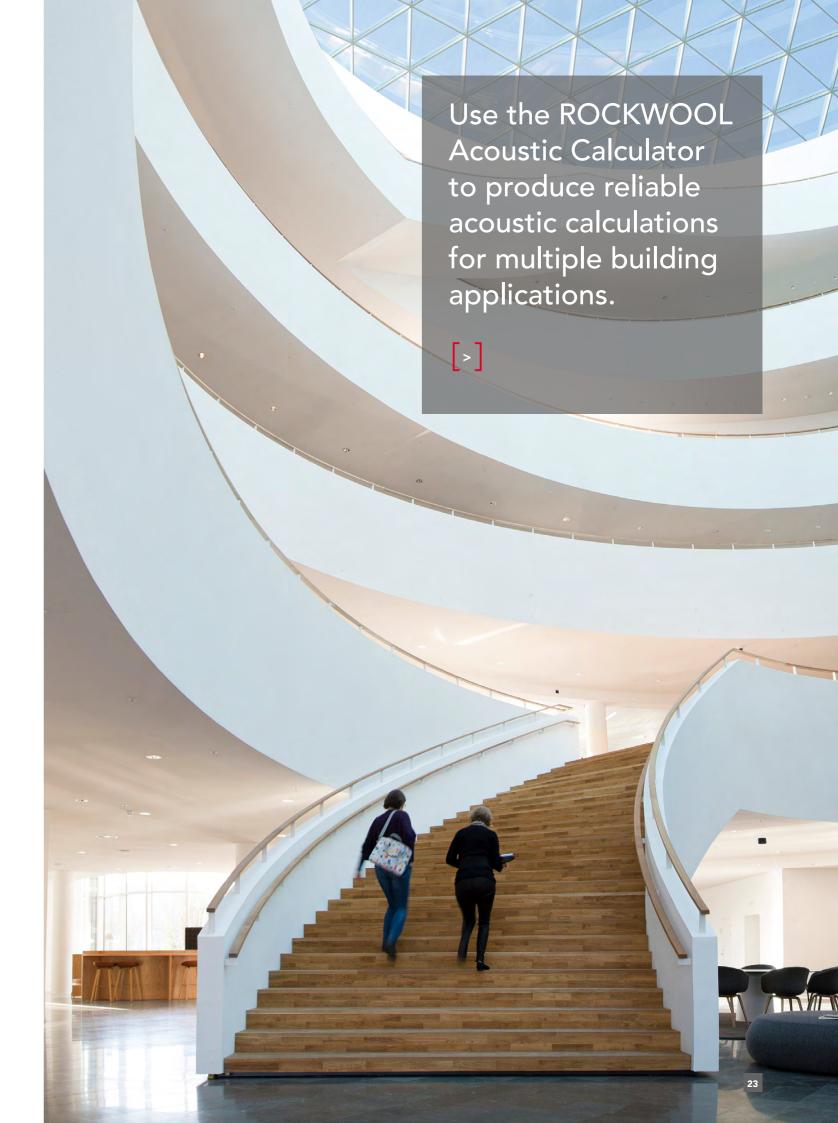
The requirements for each construction will be met by achieving the sound insulation values set out in Table 1 and/or Table 2. It is important to note that to demonstrate compliance for separating constructions (Table 1) on-site pre-completion testing is required. Pre-completion on-site testing is not required for constructions within single dwellings (Table 2).

Performance requirements are now more stringent due to the addition of a low frequency correction factor (Ctr) which must be applied to the pre-completion measure of airborne sound. The new values will therefore be more difficult to achieve for many types of construction.

Please note that the associated flanking constructions should be followed, and that the person carrying out the building work should arrange for sound insulation testing to be carried out by a test body with appropriate third-party accreditation.

Table 1 - Separating construction:

Protection against sound from other parts of a building and/or adjoining buildings.


|                 | Approved Document E (England & Wales)/ G (Northern Ireland) |                         |                                   |               |  |  |
|-----------------|-------------------------------------------------------------|-------------------------|-----------------------------------|---------------|--|--|
|                 | Airborne Dnī,w + 0                                          | Ctr dB (minimum values) | Impact L'nī,w dB (maximum values) |               |  |  |
|                 | New build                                                   | Change of use           | New build                         | Change of use |  |  |
| Walls           | 45 (*43)                                                    | 45                      | -                                 | -             |  |  |
| Floors & stairs | 45                                                          | 43                      | 62                                | 64            |  |  |
|                 | Technical Handbook Domestic Section 5 (Scotland)            |                         |                                   |               |  |  |
| Walls           | **56                                                        | ***53                   | -                                 | -             |  |  |
| Floors & stairs | **56                                                        | ***53                   | **56                              | **58          |  |  |
|                 | Technical Guidance Document E (Ireland)                     |                         |                                   |               |  |  |
| Walls           | 53                                                          | 53                      | -                                 | -             |  |  |
| Floors & stairs | 53                                                          | 53                      | 53                                | 58            |  |  |

<sup>\*</sup>Lower limit applies only to 'rooms for residential purposes' \*\*Applies to new build and conversions of non traditional buildings \*\*\*Applies to conversions of traditional buildings

#### Table 2 - Single dwelling:

Houses, flats and rooms for residential purposes, whether purpose-built or formed by material change of use.

|                 | Airborne Sound Insulation Rw dB (maximum values)                                                                                        |    |                          |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------|--|--|--|
|                 | Approved Document E (England Wales)/G (Northern Ireland)  Technical Handbook Domestic Technical Guidance Section 5 (Scotland) (Ireland) |    |                          |  |  |  |
| Walls           | 40                                                                                                                                      | 40 | See Table 1 -            |  |  |  |
| Floors & stairs | 40                                                                                                                                      | 43 | Separating constructions |  |  |  |



# ROCKWOOL - built upon responsible business principles

Sustainability is integral to our business strategy. We pursue a fact-based, auditable approach backed up by third-party references and methodologies to document progress in maximising our products' positive impact and minimising the impact of our operations.

#### Our approach is based on three principles:

#### Using less energy & materials:

We do this through the circularity of our products and the significant reduction in energy and resources our products save in their lifetime.

We continually improve the energy efficiency of our own operations.

#### Greening the rest:

By saving energy in buildings and our own operations, and transitioning to renewable energy sources.

#### Addressing climate hazards:

By thinking ahead and maximising the performance of existing products and innovating new ones, we are addressing many climaterelated hazards, such as fires, flooding, asset risks, and fossil fuel dependency. We are also reducing our own fossil fuel dependency with an ambitious decarbonisation strategy.

#### Creating sustainable operations

In 2020, ROCKWOOL was again recognised for its positive impact on society and made significant progress in reducing its operational footprint around the world.

Trucost, part of Standard & Poor's Global, has for the second time classified all our products as being SDG positive, meaning they have been assessed as having a positive impact on reaching the UN Sustainable Development Goals.

We completed two of our six interim sustainability goals two years ahead of schedule: we reduced production waste going to landfill by 40%, we hit 50%; and improved the water efficiency in our factories by 10%.

> Visit www.rockwool.com/uk/sustainability to read the ROCKWOOL Sustainability Report 2020

#### Sustainable products, supporting sustainable construction

We manufacture sustainable, infinitely recyclable products, and make a significant contribution to clients' sustainability targets, extending far beyond energy savings in the built environment:

#### Carbon positive

In its lifetime ROCKWOOL insulation will save around 100 times more carbon dioxide than is emitted during its production. ROCKWOOL insulation becomes 'net carbon positive' with the carbon emitted during manufacturing offset within a year. This is achieved as ROCKWOOL high performance insulation improves building performance and reduces emissions.

#### **Environmental Product Declarations (EPDs)**

ROCKWOOL advocates for the use of Environmental Product Declarations (EPDs), which are based on the principle of life-cycle-assessment. EPDs cover the manufacturing process as well as upstream impacts including the extraction and transport of the raw materials, and the downstream impacts such as product transport, maintenance, and disposal options at endof-life. An EPD provides a range of indicators such as global warming potential or resource depletion, which can be used as inputs to Design Tools to achieve a required sustainability performance for a building. ROCKWOOL provide EPDs for all UK manufactured stone wool insulation.

#### Naturally sustainable

ROCKWOOL products are created from volcanic rock. By far the most abundant natural resource on Earth, it is both durable and recyclable.

#### Infinitely recyclable

ROCKWOOL is recyclable and can be recycled again and again without any degradation of quality. Waste can be transformed into new ROCKWOOL products, and the dedicated UK recycling facility enables contractors and builders to recycle unused materials.

#### Circularity in construction - reducing our impact

ROCKWOOL applies lifecycle thinking and a circular economy approach to help reduce our environmental impact as we grow. We use an abundant material and engineer it to perform consistently for decades, whilst our solutions enhance the sustainability of the societies that use them. Our production processes are guided by ambitious sustainability goals to minimise our impact, and we are making great progress. We are growing our recycling services and recycle other industries' waste too by using it as a substitute for virgin raw material. We believe that it's possible to expand our business and communities whilst reducing our impact.





## Build to last

Insulation plays a major role in improving the energy efficiency of buildings and reducing carbon emissions, which means the longer a material can maintain its performance – the better it is for the environment.

While Life Cycle Assessments of buildings can assist specifiers in evaluating how construction products will perform over time, independent testing provides an additional route for verification, and more importantly – access to reliable performance data.

For stone wool insulation, independent testing was undertaken by Eurima – the European Mineral Wool Manufacturers Association. To demonstrate the durability of mineral wool insulation, Eurima initiated a project with FIW, a third-party laboratory, which followed a strict sampling procedure and testing method.

#### Scoping out stone wool performance

Focusing on insulation installed in walls and roofs, which included ROCKWOOL stone wool materials, the Eurima research examined:

- Existing buildings, unaffected by structural damage, aged 20 to 55 years
- Insulation materials extracted from buildings by an independent third-party laboratory
- Usability of the aged materials, and consequently their durability

Results were compared with the original aged product specification sheets, valid at the time they were produced.

Tests were carried out with densities ranging from 30-150kg/m³ and against the following standards:

#### Walls:

- Thickness (to EN 823)
- Density (to EN 1602)
- Moisture content (to EN ISO 12570)
- Thermal conductivity (to EN 12667)
- Compressive strength (to EN 826)
- Water absorption (to EN 12087 and/or EN 1609)

#### Roofs:

- Thickness (to EN 823)
- Density (to EN 1602)
- Moisture content (to EN ISO 12570)
- Thermal conductivity (to EN 12667)
- Compressive strength (to EN 826)
- Tensile strength (to EN 1607)
- Point load behaviour (to EN 12430)
- Water absorption (to EN 12087 and/or EN 1609)

### 55 years' durability – determined by research [>]

Using samples that had been installed for up to 55 years old, the evidence-based Eurima research determined that stone wool is a highly durable specification for thermal performance.

This conclusion was based on comprehensive analysis that verified:

- Thermal properties were highly durable in all cases the thermal conductivity of samples was 8 10% below original design values.
- Stone wool insulation remained dimensionally stable in most cases the mechanical properties of the aged samples met current new product specifications.
- Stone wool repels moisture well the tested samples showed that moisture content was very low, below the 1.0% limit by mass.

# Combining laboratory research and real word design

The long-term performance of stone wool insulation is well evidenced by the Eurima study, but how does this translate into modern building design, and how do the findings align with current standards?

#### **Declaration of Performance**

Durability Characteristics as covered by section 4.2.7 of the relevant harmonised (hEN) product standard\*, state that the thermal resistance, thermal conductivity and reaction to fire performance 'do not change with time'.

This means that there is no requirement to make a declaration of aged performance on these parameters. However, the Eurima report provides evidence of performance over time, should it be needed.

\*BS EN 13162:2012+A1:2015

#### Service life

For over 80 years, ROCKWOOL has been producing stone wool insulation for the construction industry, which means our products are installed in buildings that were constructed almost eight decades ago.

The suggested service life of insulation, as detailed in Annex D of BS 7543, is 60 years. However, the Eurima report now provides valuable real data which demonstrates that stone wool insulation maintains performance with no degradation, even after 55 years.

#### Fitness of materials

Section 1: Materials, of Regulation 7 references several ways to establish the fitness of materials, including CE Marking, the Construction Products Regulations, independent certifications, schemes, tests, calculations and past experience. Carried out by an independent EU notified body, the Eurima research provides verified evidence that stone wool insulation performs in the long term.

# Did you know?

Stonehenge was constructed over 5,000 years ago – using basalt very similar to that used to produce ROCKWOOL stone wool...

How many other construction materials are proven to stand the same test of time?



# ROCKWOOL - the complete solution

The complexities of navigating a route to Building Regulation compliance are greatly simplified by specifying ROCKWOOL as an all-encompassing insulation solution – best defined by the strengths of stone.



### Fire-resilience

ROCKWOOL insulation is extremely resilient to fire and can withstand temperatures in excess of 1000°C. It works to contain fire and prevent its spread.

At the same time, it does not contribute to the emission of significant quantities of toxic smoke.



### Thermal properties

ROCKWOOL products derive their thermal properties from tiny pockets of air trapped within the physical structure of the stone wool. These air pockets allow the insulation to keep hot air out in hot climates and to retain warm air in cold climates. This can dramatically reduce heating, cooling, and ventilation costs, and reduce a building's carbon footprint.



### Durability

ROCKWOOL insulation has a builtin robustness that is totally unique. It keeps its shape and toughness in all conditions; this means that compression, impacts and changes in temperature or humidity do not affect it. Its dimensional stability means its performance is unchanged, decade after decade, ensuring maintenance savings throughout a building's lifetime.



## Acoustic capabilities

ROCKWOOL products can be manufactured in a range of densities and we have a library of acoustic test data with proven noise reduction.



### Circularity

ROCKWOOL products can be easily removed when a building is renovated, or demolished and recycled back into new products. In fact, stone wool can be recycled again and again into new stone wool.

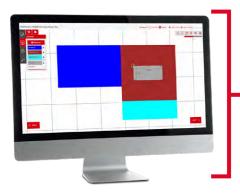


# Technical tools and resources

To assist you in the best possible way, we offer a range of free tools ranging from online software for calculating energy and heat loss to a materials calculator and much more.

Whether you are still at the beginning of your project or need technical support throughout, we are here to help along the way.




#### FIREPRO® Solution Finder [>]

The ROCKWOOL FIREPRO® solution finder, allows you to quickly and easily find the appropriate solution to common firestopping applications in the UK construction sector. This tool will guide you through simple questions about the construction and services which need to be firestopped.

#### BIM Solution Finder [>]

ROCKWOOL is proud to provide the BIM Solution Finder that will allow you to have the confidence in downloading the most recent BIM objects and the most up to date data for your projects.





#### Flat Roof Zoning Tool [>]

The ROCKWOOL Zoning Tool has been developed to ensure the efficient use of insulation products across a flat roof. Simply draw the roof borders, then zone the roof into different areas depending on the application.

### Acoustic Calculator [>]

The ROCKWOOL Acoustic Calculator has been developed to provide reliable acoustic predictions for multiple building applications.



#### U-Value Calculator [>]

Our U-value calculation tool allows you to quickly and easily calculate the thermal performance of walls, floors and roofs, with around 2,500 predetermined calculations all completed under the BBA/TIMSA U-value competency scheme. It also helps you to specify the correct product and thickness to meet your customers' requirements.





#### Rock-EQ Calculator >

Specifying the insulation for your HVAC systems is now easier thanks to the ROCKWOOL HVAC Calculation



Visit www.rockwool.com/UK/tools for more information

# Solutions for every application

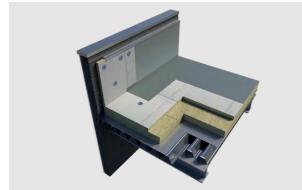
ROCKWOOL stone wool insulation delivers acoustic, fire and thermal performance for a wide range of internal and external building applications.

As a solution driven specification, ROCKWOOL insulation delivers regulation compliance and buildings that perform for the long term - from a single source.

To learn more about the specific solutions for each application area, navigate to the relevant sections.



Internal wall and floor solutions [>]




Facade & external wall solutions [>]





Pitched roof solutions [>]



Flat roof solutions [>]



Separating floor solutions [>]

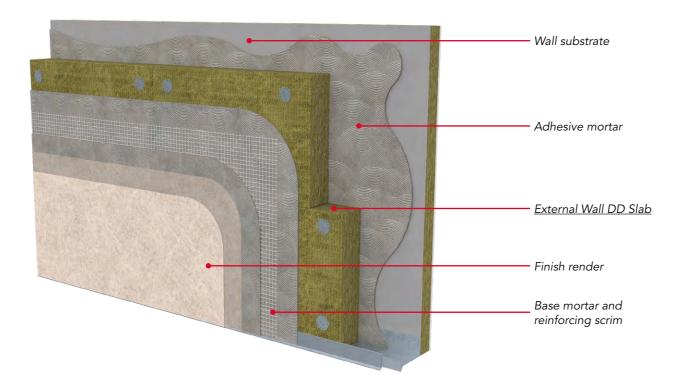


Ground floor solutions [>]

# Facade & external wall solutions

### Design beautiful buildings with performance to last.

With ROCKWOOL façade and external wall solutions, balancing performance with aesthetics has never been


ROCKWOOL stone wool insulation is non-combustible and resilient to high temperatures, capable of withstanding in excess of 1000°C. A robust and durable specification, when used in through-wall and façade build-ups, ROCKWOOL ensures compliance with the latest fire safety standards while enabling flexibility over building fabric design.

The acoustic properties of ROCKWOOL reduce the transmission of unwanted sound through external walls into a building, helping to create comfortable interior spaces even in areas where high levels of environmental noise are present.

Easy to cut to shape, ROCKWOOL façade and external wall solutions simplify installation, supporting increased efficiency and reducing margin for error on-site.



## **ETICS ROCKWOOL EWI Slab**

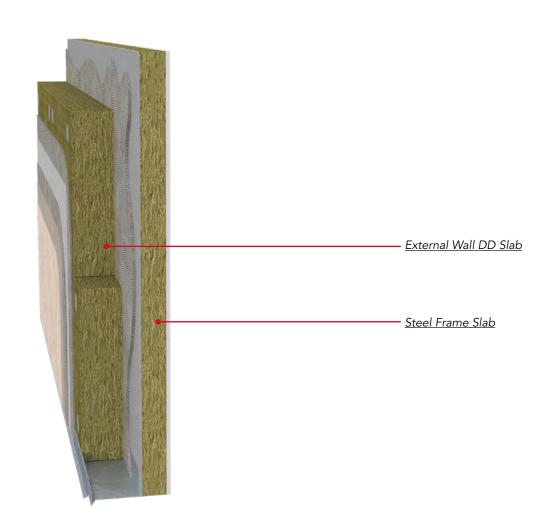


### Exterior thermal insulation for use in ETICS external wall systems.

ROCKWOOL External Wall Dual Density Slab is a stone wool insulation specifically designed for use in external wall insulation systems. Made with ROCKWOOL dual density technology, the upper layer has a distinctly higher density which provides a robust outer surface for applying render.



External Wall DD Slab is Euroclass A1 noncombustible




Testing demonstrated an improvement to the weighted sound reduction, Rw, of up to 8 dB (substrate dependent)



|                 | External Wall slab DD (mm) |                            |  |  |  |
|-----------------|----------------------------|----------------------------|--|--|--|
| 11              | Steel frame <sup>1</sup>   | 215mm block <sup>2</sup>   |  |  |  |
| U-value (W/m²K) | Steel frame.               | Z I SMM BIOCK <sup>2</sup> |  |  |  |
| 0.25            | 70                         | 130                        |  |  |  |
| 0.23            | 80                         | 140                        |  |  |  |
| 0.20            | 100                        | 170                        |  |  |  |
| 0.18            | 120                        | 190                        |  |  |  |
| 0.16            | 140                        | 210                        |  |  |  |
| 0.15            | 160                        | 220                        |  |  |  |
| 0.14            | 170                        | 240                        |  |  |  |

 $<sup>^{1}</sup>$  12mm cement particle board, 100mm steel frame filled with 100mm Steel Frame Slab, 2 x 12.5mm plasterboard.

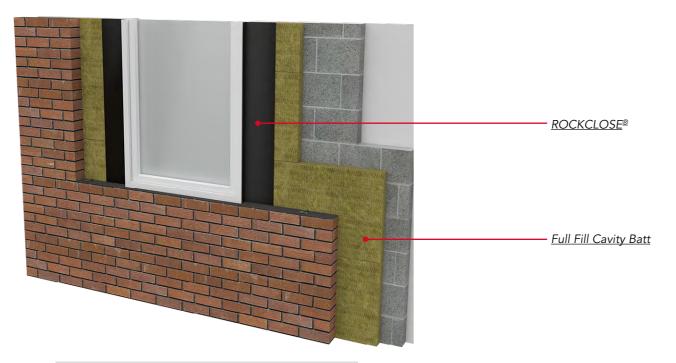


### Standards & approvals

| Product               | CE      | Reaction     | Fire       | 3rd party     |
|-----------------------|---------|--------------|------------|---------------|
|                       | marking | to fire      | resistance | certification |
| External Wall DD Slab | ✓       | Euroclass A1 | -          | -             |

#### Product specification

| Product               | NBS Clauses | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|-----------------------|-------------|-------------|------------|-----------------------------------|
| External Wall DD Slab | M21         | 1200        | 600        | 50-250                            |


<sup>\*</sup>Thickness options may be subject to a minimum production volume.

For further information on our standard thickness range please visit www.rockwool.com/uk

<sup>&</sup>lt;sup>2</sup> 215mm dense concrete block, 13mm plaster

# Masonry cavity walls

Full-fill



#### **ROCKWOOL** offer water repellent stone wool cavity batts to fully fill masonry cavity walls.

The lightweight batts are easy to handle and install and provide a tight fit against brick and blockwork. The non-combustible full-fill batts also prevent the spread of fire within a cavity, removing the need for separate cavity barriers. The batts are durable so do not slump or sag over time, providing lasting thermal performance.



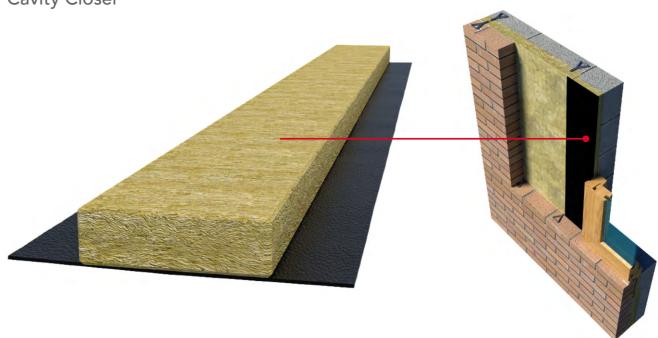
- Full Fill Cavity Batt achieves Euroclass A1
- Full Fill Cavity Batt acts as a cavity barrier within a masonry cavity wall
- ROCKCLOSE provides 60 minutes fire integrity and 30 minutes insulation around door and window reveals



- Non-directional, stone wool fibres absorb soundwaves and dampen vibration
- Full Fill Cavity Batt are able to meet Part E of the building regulations when used in separating masonry cavity walls



• Full Fill Cavity Batts have been certified by the BBA as a full fill cavity insulation within masonry walls




| Inner block                             | Dense<br>(1.130 W/mK) | Medium dense<br>(0.470 W/mK) | Aircrete standard<br>(0.15 W/mK) |
|-----------------------------------------|-----------------------|------------------------------|----------------------------------|
| Full Fill Cavity Batt thickness<br>(mm) | U-value (W/m²K)       | U-value (W/m²K)              | U-value (W/m²K)                  |
| 100                                     | 0.31                  | 0.29                         | 0.27                             |
| 120                                     | 0.26                  | 0.25                         | 0.24                             |
| 150                                     | 0.22                  | 0.21                         | 0.20                             |
| 180                                     | 0.18                  | 0.18                         | 0.17                             |

U-values based on 102mm facing brick and an internal finish of plasterboard on dabs

ROCKWOOL ROCKCLOSE® minimises thermal bridging around door and window reveals, and exceeds the minimum thermal resistance of a closer of not less than 0.45 W/mK.





#### Standards & approvals

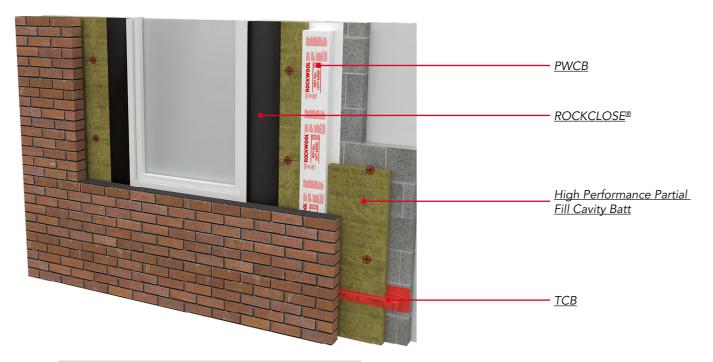
| Product                   | CE<br>marking | Reaction<br>to fire | Fire<br>resistance                      | 3rd party<br>certification         |
|---------------------------|---------------|---------------------|-----------------------------------------|------------------------------------|
| *Full Fill<br>Cavity Batt | 1             | Euroclass A1        | -                                       | BBA Approved (certificate 94/3079) |
| **ROCKCLOSE®              | -             | -                   | Integrity: 60mins<br>Insulation: 30mins | -                                  |

<sup>\*</sup>Meets the criteria of Approved Document E, Section 2 – Separating walls and associated flanking constructions for new buildings

### Product specification

| Product               | NBS Clauses | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|-----------------------|-------------|-------------|------------|-----------------------------------|
| Full Fill Cavity Batt | F30-130     | 1200        | 455        | 50-250                            |
| <u>ROCKCLOSE</u> ®    | F30-180     | 1200        | 100        | 20-100                            |

<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.com/uk


#### BIM objects

Full Fill Cavity Batt

<sup>\*\*</sup>Meets the criteria of Approved Document L, Section 3 – Thermal Bridges

# Masonry cavity walls

Partial-fill



#### For masonry cavity walls, ROCKWOOL offer a highly durable semi-rigid partial fill insulation solution.

ROCKWOOL also offer cavity barriers to prevent the spread of fire between party walls and separating floors, and cavity closers to prevent thermal bridging and the spread of fire through door and window reveals.



- HP Partial Fill is Euroclass A1 noncombustible
- PWCB provides 60 minutes fire integrity and 60 minutes resistance.
- TCB provides 60 minutes fire integrity and 30-60 minutes insulation\*
- ROCKCLOSE® provides 60 minutes fire integrity and 30 minutes insulation



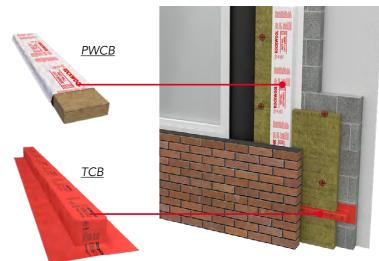
- Non-directional, stone wool fibres absorb soundwaves and dampen vibration
- PWCB & TCB prevent flanking noise along concealed cavities



• High Performance Partial Fill Cavity Slab has been certified by the BBA as a partial fill cavity insulation within masonry walls

\*dependent upon TCB size – refer to data sheet




| Inner block<br>High Performance Partial Fill<br>thickness (mm) | Dense<br>(1.130 W/mK)<br>U-value (W/m²K) | Medium dense<br>(0.470 W/mK)<br>U-value (W/m²K) | Aircrete standard<br>(0.15 W/mK)<br>U-value (W/m²K) |
|----------------------------------------------------------------|------------------------------------------|-------------------------------------------------|-----------------------------------------------------|
| 100                                                            | 0.28                                     | 0.27                                            | 0.25                                                |
| 120                                                            | 0.24                                     | 0.23                                            | 0.22                                                |
| 150                                                            | 0.2                                      | 0.19                                            | 0.18                                                |
| 180                                                            | 0.17                                     | 0.17                                            | 0.16                                                |

U-values based on 102mm facing brick and an internal finish of plasterboard on dabs

 $ROCKWOOL\ ROCKCLOSE^{\scriptsize @}\ minimises\ thermal\ bridging\ around\ door\ and\ window\ reveals,\ and\ exceeds\ the\ minimum\ thermal\ resistance\ of\ and\ resistance\ of\ resi$ a closer of not less than 0.45 W/mK.

### **ROCKCLOSE®** and Cavity Closer - PWCB & TCB





#### Standards & approvals

| Product                          | CE<br>marking | Reaction<br>to fire | Fire<br>resistance                         | 3rd party<br>certification            |
|----------------------------------|---------------|---------------------|--------------------------------------------|---------------------------------------|
| High Performance<br>Partial Fill | 1             | Euroclass A1        | -                                          | BBA Approved<br>(Certificate 93/2884) |
| *TCB & PWCB**                    | -             | -                   | Integrity: 60mins<br>Insulation: 30-60mins | LPCB<br>(Certificate 022b(3))         |
| **ROCKCLOSE®                     | -             | -                   | Integrity: 60mins<br>Insulation: 30mins-   | -                                     |

<sup>\*</sup>Meets the criteria of Approved Document E, Section 2 – Separating walls and associated flanking constructions for new buildings

#### Product specification

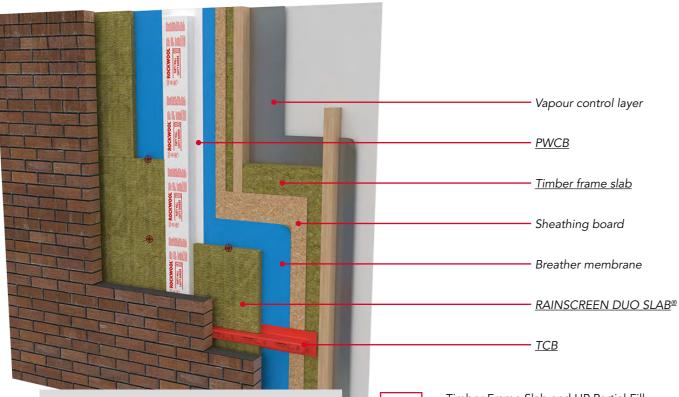
| Product            | NBS Clauses                  | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|--------------------|------------------------------|-------------|------------|-----------------------------------|
| HP Partial Fill    | F30-155                      | 1200        | 455        | 50-250                            |
| TCB                | F30-180, K10-530,<br>P10-420 | 1200        | 65-210     | 65-160                            |
| <u>PWCB</u>        | F30-180, K10-530,<br>P10-420 | 1200        | 200        | 65-160                            |
| <u>ROCKCLOSE</u> ® | F30-180                      | 1200        | 100        | 20-100                            |

<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.com/uk

### BIM objects



Partial Fill




↑ TCB/PWCB

<sup>\*\*</sup>Meets the criteria of Approved Document L, Section 3 - Thermal Bridges

<sup>\*\*\*</sup> Meets the criteria of Approved Document B, Section 5 – Internal Fire Spread

# Timber frame walls



For timber frame constructions, ROCKWOOL supply a range of products to provide thermal, fire and acoustic performance.

The ROCKWOOL Timber Frame Slab delivers a low thermal conductivity, Euroclass A1 reaction to fire and exceptional sound reduction. When paired with RAINSCREEN DUO SLAB® sheathing insulation layer, U-values to meet and exceed building regulations can be achieved. ROCKWOOL PWCB and TCB complete the solution, preventing the spread of fire within the open cavity space.

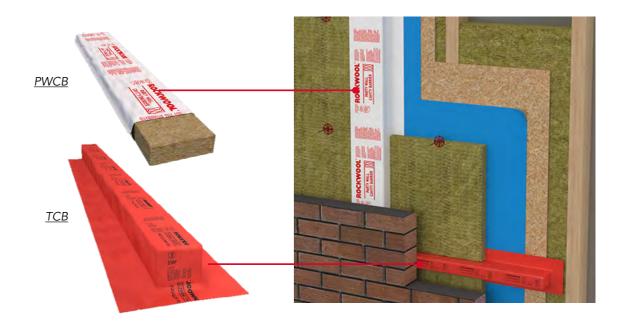


- Timber Frame Slab and HP Partial Fill achieve Euroclass A1 fire resistance
- PWCB provides 60 minutes fire integrity and 60 minutes resistance.
- TCB provides 60 fire integrity and 30-60 minutes insulation\*



- Non-directional, stone wool fibres absorb soundwaves and dampen vibration
- PWCB & TCB prevent flanking noise along concealed cavities




 RAINSCREEN DUO SLAB® has been certified by the BBA for use in timber frame constructions with a masonry outer

\*dependent upon TCB size – refer to data sheet



| Timber frame slab<br>(mm) | RAINSCREEN DUO SLAB <sup>®</sup><br>sheathing<br>(mm) | Service void & reflective vapour control layer | U-value<br>(W/m²K) |
|---------------------------|-------------------------------------------------------|------------------------------------------------|--------------------|
| 90                        | 50                                                    |                                                | 0.24               |
| 90                        | 50                                                    | <i>v</i>                                       | 0.23               |
| 140                       | 50                                                    |                                                | 0.19               |
| 140                       | 50                                                    | <b>v</b>                                       | 0.17               |

#### **ROCKWOOL Cavity Barriers** PWCB & TCB



#### Standards & approvals

| Product                 | CE<br>marking | Reaction<br>to fire | Fire<br>resistance                         | 3rd party<br>certification            |
|-------------------------|---------------|---------------------|--------------------------------------------|---------------------------------------|
| Timber Frame Slab       | ✓             | Euroclass A1        | -                                          | -                                     |
| RAINSCREEN DUO<br>SLAB® | ✓             | Euroclass A1        | -                                          | BBA Approved<br>(Certificate 17/5402) |
| *PWCB & TCB             | -             | -                   | Integrity: 60mins<br>Insulation: 30-60mins | -                                     |
| **ROCKCLOSE®            | -             |                     | Integrity: 60mins<br>Insulation: 30mins    | -                                     |

<sup>\*</sup>Meets the criteria of Approved Document E, Section 2 – Separating walls and associated flanking constructions for new buildings

### Product specification

| Product                 | NBS Clauses                           | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|-------------------------|---------------------------------------|-------------|------------|-----------------------------------|
| Timber Frame Slab       | P10-140                               | 1200        | 400, 570   | 50-200                            |
| RAINSCREEN DUO<br>SLAB® | H11-110, H11-780,<br>H92-776, P10-217 | 1200        | 455, 600   | 50-230                            |
| <u>TCB</u>              | F30-530, P10-420                      | 1200        | 65-210     | 65-160                            |
| <u>PWCB</u>             | F30-530, P10-420                      | 1200        | 200        | 65-160                            |

<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.com/uk

#### BIM objects

RAINSCREEN DUO SLAB®



<sup>\*\*</sup>Meets the criteria of Approved Document L, Section 3 – Thermal Bridges

# Steel framed walls



acoustic insulation of external steel frame walls.

Solutions for masonry and ventilated facades are available. Thermal insulation is provided through insulation between the studs, as well as a sheathing board (RAINSCREEN DUO SLAB®) to further reduce U-values. SP Firestop solutions prevent the spread of fire, and \*flanking noise in the cavity.





- Euroclass A1 non-combustiblel
- SP Firestop Systems provide up to 120 minutes fire integrity and insulation for both horizontal and vertical applications

Vapour control layer

Steel Frame Slab

SP Firestop System

Breather membrane

RAINSCREEN DUO SLAB®



- Non-directional, stone wool fibres absorb soundwaves and dampen vibration
- Able to meet and exceed Part E of the building regulations when used in separating masonry cavity walls



 RAINSCREEN DUO SLAB® has been certified by the BBA for use in steel frame constructions with a masonry outer leaf

ROCKWOOL Technical Support for further information.



| Steel frame slab<br>(mm) | RAINSCREEN DUO SLAB® sheathing (mm) | U-value<br>(W/m²K) |
|--------------------------|-------------------------------------|--------------------|
| 100                      | 50                                  | 0.27               |
| 100                      | 100                                 | 0.24               |
| 150                      | 100                                 | 0.19               |
| 150                      | 100                                 | 0.17               |

### **ROCKWOOL Cavity Barriers** SP Firestop System



#### Standards & approvals

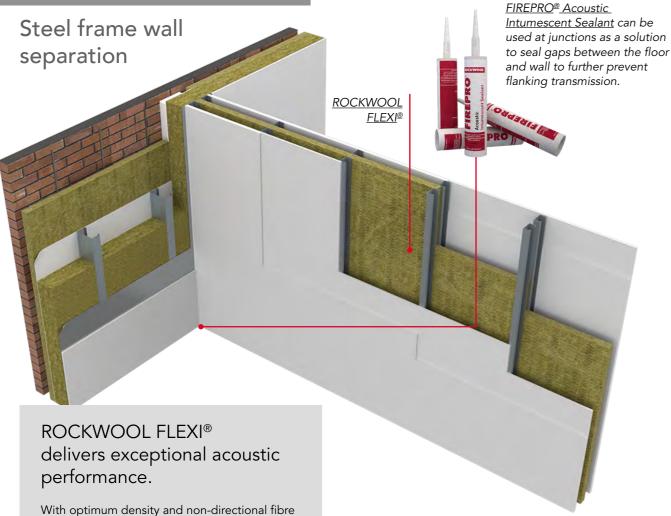
| Product                 | CE<br>marking | Reaction<br>to fire | Fire<br>resistance                                     | 3rd party<br>certification            |
|-------------------------|---------------|---------------------|--------------------------------------------------------|---------------------------------------|
| Steel Frame Slab        | ✓             | Euroclass A1        | -                                                      | -                                     |
| RAINSCREEN<br>DUO SLAB® | 1             | Euroclass A1        | -                                                      | BBA Approved<br>(Certificate 17/5402) |
| *SP Firestop System     |               | -                   | Integrity: Up to 120mins** Insulation: Up to 120mins** | Certifire: CF5386                     |

<sup>\*</sup>Meets the criteria of Approved Document E, Section 2 – Separating walls and associated flanking constructions for new buildings \*\*Subject to the application

Whilst the external wall is not typically required to have a Fire Resistance performance itself, the compartment floors and walls abutting it do, as such the SP Firestop systems have been tested within representative wall and floor substrates to prove their fire resistance performance. It is important to note that the Fire Resistance performance of the firestop is only as good as the performance of the supporting substrates in to which it is installed. Where Firestopping is installed up to a non-fire resisting external wall then the performance of the fire-stop will be limited to the performance of the wall itself.

#### Product specification

| Product                      | NBS Clauses                            | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|------------------------------|----------------------------------------|-------------|------------|-----------------------------------|
| ROCKWOOL Steel<br>Frame Slab | K10-145, K10-155, K10-165              | 1200        | 600        | 50-200                            |
| RAINSCREEN DUO<br>SLAB®      | H11-110, H11-780, H92-<br>776, P10-217 | 1200        | 600        | 50-230                            |
| SP Firestop System           | F30-180, P10-432, P12-360              | 1000 - 1200 | 650 - 1000 | 75-90                             |


<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.com/uk

#### BIM objects





# Separating walls

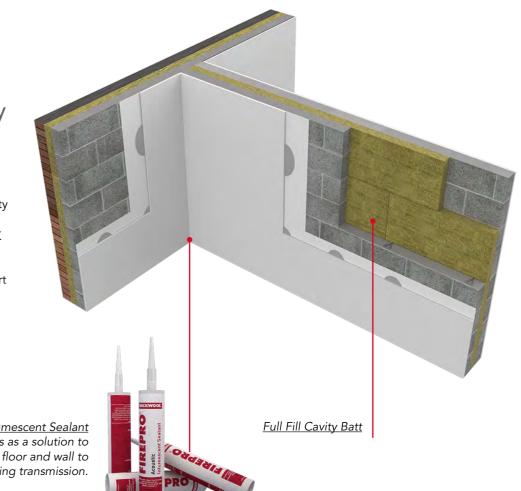


orientation, ROCKWOOL FLEXI® has excellent acoustic properties. The patented flexible edge ensures an accurate fit within framed applications reducing flanking paths through separating, and internal wall constructions. FLEXI® is non-combustible and suitable for use in fire rated compartment walls.



ROCKWOOL FLEXI® is Euroclass A1 non combustible




#### Robust details

| E-WT1: Timber frame                                         | E-WS-1: Twin metal frames                                   | Performance                                         |
|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|
| Independent timber frames with a minimum 50mm gap           | Independent steel frames<br>with a minimum 50mm gap         |                                                     |
| Minimum 240mm between inside lining faces                   | Minimum 200mm between inside lining faces                   | Airborne Sound                                      |
| 60mm ROCKWOOL FLEXI® in both frames                         | 50mm ROCKWOOL FLEXI® in both frames                         | Reduction D <sub>nT,w</sub> + C <sub>tr</sub> 50 dB |
| 2 x 15mm plasterboard (22kg/m²)<br>to each side of the wall | 2 x 15mm plasterboard (22kg/m²)<br>to each side of the wall |                                                     |



- ROCKWOOL Cavity Batt can be used to fully fill a masonry party wall and reduce the U-value to 0.00W/m<sup>2</sup>K
- Full Fill Cavity Batts can be used to support robust details for acoustic insulation in masonry party wall constructions

<u>FIREPRO® Acoustic Intumescent Sealant</u> can be used at junctions as a solution to seal gaps between the floor and wall to further prevent flanking transmission.

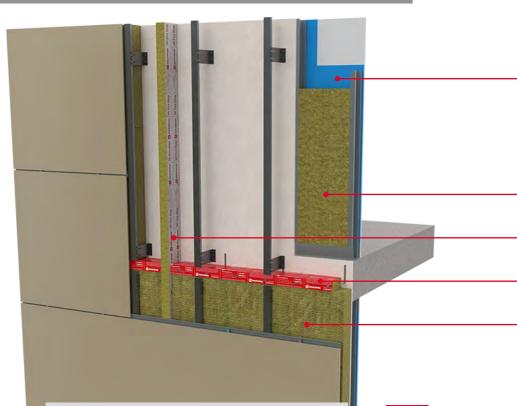


### Standards & approvals

| Product               | CE<br>marking | Reaction<br>to fire | Fire<br>resistance | 3rd party<br>certification            |
|-----------------------|---------------|---------------------|--------------------|---------------------------------------|
| ROCKWOOL FLEXI®       | 1             | Euroclass A1        | -                  | LPCB<br>(Certificate 022e)            |
| Full Fill Cavity Batt | 1             | Euroclass A1        | -                  | BBA Approved<br>(Certificate 17/5402) |

### Product specification

| Product               | NBS Clauses                                                                                                                                                                                    | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-----------------------------------|
| ROCKWOOL FLEXI®       | K10-115, K10-125, K10-145, K10-155,<br>K10-165, K10-215, K11-115, K11-125,<br>K11-135, K11-145, K11-795, K11-796,<br>K20-150, K21-120, K21-130, K21-140,<br>P10-140, P10-170, P10-240, P10-250 | 1200        | 400, 600   | 50-200                            |
| Full Fill Cavity Batt | F30-130                                                                                                                                                                                        | 1200        | 455        | 50-250                            |


<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.co.uk

#### BIM objects



Cavity Batt

# Ventilated rainscreen



ROCKWOOL offer a complementary noncombustible insulation and fire barrier solution for ventilated rainscreen walls.

The robust Dual-Density RAINSCREEN DUO SLAB® combined with the low thermal conductivity of Steel Frame Slab provide outstanding thermal and acoustic performance, while SP Firestop and SP Firestop OSCB provide up to two hours integrity and insulation in the event of a fire.



RAINSCREEN DUO SLAB® and Steel Frame Slab are non-combustible and can be used on buildings of any height.

Vapour control layer

Steel Frame Slab

SP Firestop OSCB

RAINSCREEN DUO SLAB®

SP Firestop

 SP Firestop and SP Firestop OSCB are tested to provide up to two hours integrity and insulation in the event of a fire.



RAINSCREEN DUO SLAB® has been certified by the BBA for use in Rainscreen Cladding Systems



|                    | Thickness (mm)      |                         |  |  |  |
|--------------------|---------------------|-------------------------|--|--|--|
| U-value<br>(W/m²K) | Steel Frame<br>Slab | RAINSCREEN<br>DUO SLAB® |  |  |  |
| 0.26               | 150                 | 60                      |  |  |  |
| 0.21               | 150                 | 100                     |  |  |  |
| 0.18               | 150                 | 150                     |  |  |  |



| RAINSCREEN DUO | ROCKWOOL Steel<br>Frame Slab within | , rescript        |             | anel A2                          | ACM<br>(Booth Muirie) |                                  |
|----------------|-------------------------------------|-------------------|-------------|----------------------------------|-----------------------|----------------------------------|
| SLAB® (mm)     | frame (mm)                          | plasterboard (mm) | $R_{\rm w}$ | R <sub>w</sub> + C <sub>tr</sub> | R <sub>w</sub>        | R <sub>w</sub> + C <sub>tr</sub> |
|                | 90                                  | 2                 | 57          | 50                               | 58                    | 47                               |
| 50             | 90                                  | 1                 | 57*         | 47*                              | 58                    | 45                               |
| 100            | 90                                  | 2                 | 59          | 52                               | 58                    | 49                               |
| 100            | 90                                  | 1                 | 59*         | 51*                              | 58*                   | 48*                              |
| 180            | 90                                  | 2                 | 62          | 54                               | 60                    | 52                               |
|                | 90                                  | 1                 | 62*         | 53*                              | 60*                   | 52*                              |

<sup>\*</sup>Assessed against the data held within test report C/23666/T03





SP Firestop

SP Firestop OSCB

#### Standards & approvals

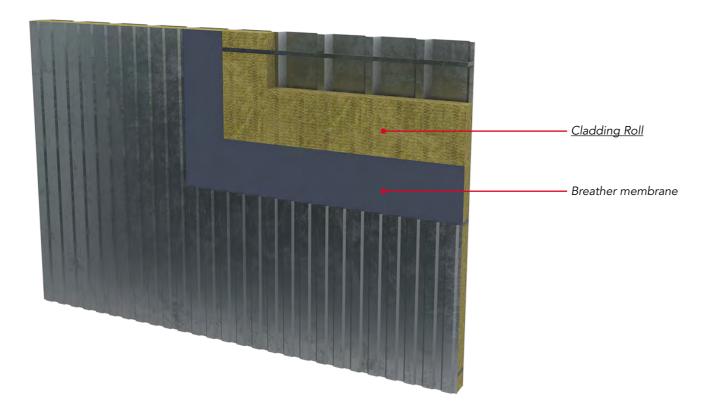
| Product                 | CE<br>marking | Reaction<br>to fire | Fire<br>resistance                                     | 3rd party<br>certification            |
|-------------------------|---------------|---------------------|--------------------------------------------------------|---------------------------------------|
| RAINSCREEN DUO<br>SLAB® | ✓             | Euroclass A1        | -                                                      | BBA Approved<br>(Certificate 17/5042) |
| Steel Frame Slab        | 1             | Euroclass A1        | -                                                      | -                                     |
| SP Firestop System      | -             | -                   | Integrity: Up to 120mins** Insulation: Up to 120mins** | Certifire: CF5386                     |
| SP Firestop OSCB        | -             | -                   | Integrity: Up to 120mins<br>Insulation: Up to 120mins  | -                                     |

<sup>\*</sup>Meets the criteria of Approved Document E, Section 2 – Separating walls and associated flanking constructions for new buildings \*\*Subject to the application

Whilst the external wall is not typically required to have a Fire Resistance performance itself, the compartment floors and walls abutting it do, as such the SP Firestop systems have been tested within representative wall and floor substrates to prove their fire resistance performance. It is important to note that the Fire Resistance performance of the firestop is only as good as the performance of the supporting substrates in to which it is installed. Where Firestopping is installed up to a non-fire resisting external wall then the performance of the fire-stop will be limited to the performance of the wall itself.

#### Product specification

| Product NBS Clauses  |                                        | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|----------------------|----------------------------------------|-------------|------------|-----------------------------------|
| Steel Frame Slab     | K10-145, K10-155, K10-<br>165          | 1200        | 600        | 50-200                            |
| RAINSCREEN DUO SLAB® | H11-110, H11-780, H92-<br>776, P10-217 | 1200        | 600        | 50-230                            |
| SP Firestop System   | F30-180, P10-432, P12-<br>360          | 1000 - 1200 | 650 - 1000 | 75-90                             |
| SP Firestop OSCB     | F30-180, P10-432, P12-<br>360          | 1000        | 75-575     | 90                                |


<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.com/uk

#### BIM objects



ROCKWOOL SP Firestop

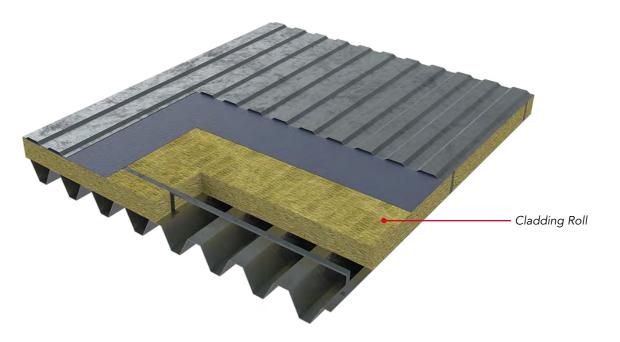
# Twin skin metal cladding



Commercial or industrial framed buildings can reap the rewards of lightweight, fire resistant cladding insulation that also offers thermal and acoustic benefits.

ROCKWOOL Cladding Roll has been specifically developed for use as an economical solution for projects that require dimensionally stable, consistent thermal performance in both roof and wall applications.




- Tests have shown that with suitably designed constructions excellent sound reduction can be achieved.
- A 0.4mm thick lining sheet and 0.55mm outer sheet filled with 100mm Cladding Roll achieved Rw 37dB.
- This can be increased to Rw 38dB by including an air space between the insulation and the outer sheets.



| U-value (W/m²K) | Thickness (mm) |
|-----------------|----------------|
| 0.24            | 180            |
| 0.22            | 200            |
| 0.20            | 220            |



- A typical metal twin skin wall incorporating ROCKWOOL Cladding Roll has been fire tested and shown to comply with BS 476: Part 22 as a fire rated wall one metre or more from a relevant boundary.
- The over sheeting rail system achieved 4 hours integrity, 4 hours stability and 17 minutes insulation (Warres No. 42624 + WF153726).
- Alternative fire wall designs have been tested by cladding systems manufacturers using different sheeting, fixing and spacer systems. These manufacturers should be contacted for full specification and design.



#### Standards & approvals

| Product       | CE      | Reaction     | Fire                     | 3rd party                  |
|---------------|---------|--------------|--------------------------|----------------------------|
|               | marking | to fire      | resistance               | certification              |
| Cladding Roll | ✓       | Euroclass A1 | Integrity: Up to 240mins | LPCB<br>(Certificate 022e) |

### Product specification

| Product              | Product NBS Clauses  Cladding Roll H30-311, H31-254, H31-271, P10-220 |  | Width (mm) | Approved thickness range (mm) |
|----------------------|-----------------------------------------------------------------------|--|------------|-------------------------------|
| <u>Cladding Roll</u> |                                                                       |  | 1200       | 60-220                        |

#### BIM objects



# Flat roof solutions

#### Specify performance where it's needed.

Supporting specifiers in delivering developments that address modern construction demands, ROCKWOOL enables flexibility in design by providing access to a wide range of solutions that facilitate flat roof zoning.

Where building design incorporates green roofs, roof terraces and roof gardens in line with the living roof agenda, the ROCKWOOL HARDROCK® range presents a solution for every application.

For rooftop plant and machinery, ROCKWOOL flat roof solutions offer a choice of acoustic performance and dual-density products that will reduce transmission of sound into the building below.

With rain noise known to significantly increase indoor noise levels – up to 70dBA in some cases – reducing noise transfer from the roof and into buildings is a key design consideration. Building Regulation submissions should demonstrate that lightweight roofs and roof glazing have been designed to control reverberant rain noise, while BREAAM for Schools provides credits for not exceeding the allowable indoor ambient noise level by more than 25dB.

High density ROCKWOOL roof boards provide an excellent barrier to the drumming effects of rain noise. Tests show that when used within a flat roof system, ROCKWOOL roof boards support a significant reduction in rain noise intensity.

As the fifth façade in the building fabric, fire safety is a key consideration in flat roof design. The noncombustible nature of ROCKWOOL delivers the highest levels of fire performance, which also facilitates the safe completion of hot works during construction and maintenance.



# HARDROCK® Multi-Fix DD



A versatile insulation solution for flat roofs, suitable for areas subject to pedestrian traffic and frequent maintenance, and compatible with all roof covering types - including torch-on, pour-and-roll, single ply, EPDM, liquid-applied, and green roofs.

As well as delivering outstanding thermal and fire performance, the innate acoustic properties of ROCKWOOL HARDROCK® Multi-Fix DD substantially improve the ability of lightweight flat roof systems to control both noise ingress and egress through the building envelope.



In addition to being non-combustible, HARDROCK Multi-Fix has been fire tested to BS EN 1365-2 as part of a weight-loaded steel deck flat roof system to provide two hours' integrity and insulation performance.



| Insulation layer 1<br>(mm) | Insulation layer 2<br>(mm) | Single ply membrane<br>U-value (W/m²K) | Bitumen (2-layer felt)<br>U-value (W/m²K) |
|----------------------------|----------------------------|----------------------------------------|-------------------------------------------|
| 150                        | 60                         | 0.18                                   | 0.18                                      |
| 150                        | 85                         | 0.16                                   | 0.16                                      |
| 150                        | 105                        | 0.15                                   | 0.15                                      |



| Insulation layer 1<br>(mm) | Insulation layer 2<br>(mm) | Airborne<br>reduction (dB) | Rain intensity<br>(dB) | Airborne<br>reduction (dB) | Rain intensity<br>(dB) |
|----------------------------|----------------------------|----------------------------|------------------------|----------------------------|------------------------|
| 150                        | 60                         | R <sub>w</sub> 44          | L <sub>IA</sub> 48.7   | R <sub>w</sub> 45          | L <sub>IA</sub> 47.5   |
| 150                        | 85                         | R <sub>w</sub> 45          | L <sub>IA</sub> 47.8   | R <sub>w</sub> 46          | L <sub>IA</sub> 46.7   |
| 150                        | 105                        | R, 46                      | L <sub>14</sub> 47.1   | R <sub>.,</sub> 47         | L, 46.1                |

Based on D60 profiled steel deck. Further variations available on request.

#### Acoustic Membrane & Acoustic Infills

For the most demanding of acoustic specifications, ROCKWOOL Acoustic Membrane can improve airborne and rain noise performance even further.

Additionally, the underside of a perforated metal deck roof can be used to control build up of internal noise, reducing the reverberation time through the enhanced absorption offered by ROCKWOOL Acoustic Infills.



### Multi-Fix Angle Fillets

Manufactured from high density ROCKWOOL stone wool, <u>Multi-Fix Angle Fillets</u> are designed to be installed at 90° abutments. Perfect for where roof insulation meets an upstand, Angle Fillets smooth the transition from horizontal to vertical while fully supporting the waterproof membrane.



#### HARDROCK® UB34

Consisting of non-combustible ROCKWOOL insulation faced with an exterior grade non-combustible 6mm fibre cement board, HARDROCK UB34 achieves a Euroclass fire classification of A2-s1, d0, offering a non-combustible solution for insulating upstands and parapet walls.



#### Standards & approvals

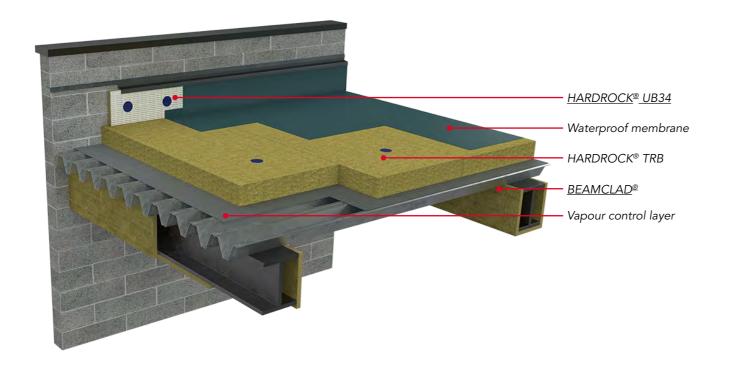
| Product                          | CE<br>marking | Reaction<br>to fire | Fire<br>resistance | 3rd party<br>certification |
|----------------------------------|---------------|---------------------|--------------------|----------------------------|
| HARDROCK®<br>Multi-Fix           | ✓             | Euroclass A2-s1, d0 | 120 Minutes        | LPCB<br>(Certificate 022e) |
| HARDROCK®<br>Multi-Fix Underlay" | ✓             | Euroclass A1        | 120 Minutes        | LPCB<br>(Certificate 022e) |

#### NBS specifications

ROCKWOOL HARDROCK® Multi-Fix is associated with the following NBS clauses:

| Product                 | NBS Clauses                                     | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|-------------------------|-------------------------------------------------|-------------|------------|-----------------------------------|
| HARDROCK®_<br>Multi-Fix | J21-425, J31-334, J41-<br>425, J42-425, K11-695 | 1000        | 1200       | 60-185                            |

<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.com/uk


#### BIM objects



ROCKWOOL Red Book 55

# HARDROCK® TRB

# HARDROCK® Terrace



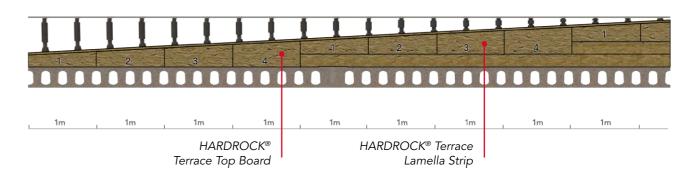
A cost effective thermal insulation solution for flat roofs, which is compatible with mechanically fixed waterproofing membrane coverings.

ROCKWOOL HARDROCK® TRB is specifically engineered as a thermal insulation for flat roof areas that will be subject only to infrequent maintenance foot traffic.



ROCKWOOL HARDROCK® TRB is noncombustible, Euroclass A1.




HARDROCK® TRB will act to dampen sound and vibration through the roof.



| Insulation layer 1 (mm) | Single ply membrane U-value (W/m²K) | Bitumen (2-layer felt) U-value (W/m²K) |
|-------------------------|-------------------------------------|----------------------------------------|
| 140                     | 0.25                                | 0.25                                   |
| 175                     | 0.20                                | 0.20                                   |
| 190                     | 0.18                                | 0.18                                   |
| 230                     | 0.15                                | 0.15                                   |

#### Standards & approvals

| Product       | CE      | Reaction     | Fire       | 3rd party     |
|---------------|---------|--------------|------------|---------------|
|               | marking | to fire      | resistance | certification |
| HARDROCK® TRB | ✓       | Euroclass A1 | -          | -             |



HARDROCK® Terrace is an innovative non-combustible solution for insulating roof terraces and balconies, capable of withstanding loads from heavy foot traffic and equipment support solutions.

The system is available flat, or alternatively can be tapered to quickly and easily provide a fall in the roof.



HARDROCK® Terrace is non-combustible, Euroclass A2-s1, d0.



HARDROCK® Terrace will act to dampen sound and vibration through the roof.

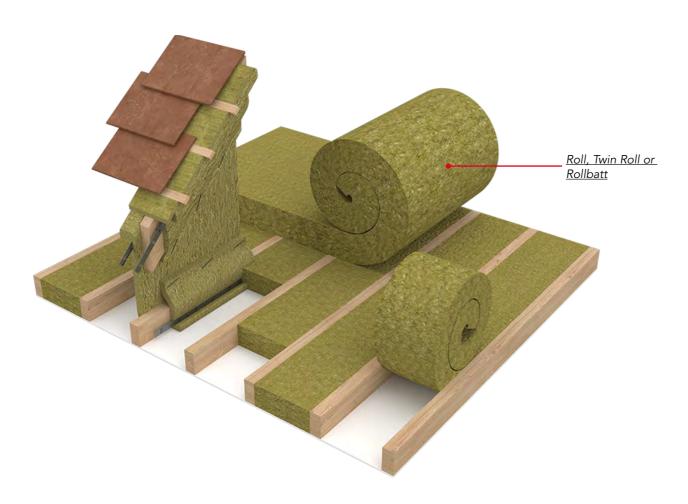


| HARDROCK® Terrace on profiled steel decks |      |                  |                     |      |      |
|-------------------------------------------|------|------------------|---------------------|------|------|
| t max (mm)                                |      |                  | U-value (W/m²K)     |      |      |
| Fall length (m)                           | 0.15 | 0.12             | 0.10                | 0.09 | 0.08 |
| 2                                         | 325  | 400              | 475                 | 500  | 575  |
| 4                                         | 350  | 425              | 500                 | 525  | 600  |
| 6                                         | 400  | 450              | 525                 | 575  | 625  |
| 8                                         | 450  | 475              | 550                 | 600  | 650  |
| 10                                        | 500  | 500              | 575                 | 625  | 675  |
|                                           |      | HARDROCK® Terrac | e on concrete decks |      |      |
| 2                                         | 315  | 390              | 465                 | 515  | 565  |
| 4                                         | 365  | 415              | 490                 | 540  | 590  |
| 6                                         | 390  | 465              | 515                 | 565  | 615  |
| 8                                         | 415  | 490              | 540                 | 590  | 640  |
| 10                                        | 440  | 515              | 590                 | 615  | 690  |

#### Standards & approvals

| Product              | CE marking | Standard | Reaction<br>to fire | Fire<br>resistance | 3rd party<br>certification |
|----------------------|------------|----------|---------------------|--------------------|----------------------------|
| HARDROCK®<br>Terrace | ✓          | N/A      | Euroclass A2-s1, d0 | N/A                | N/A                        |

# Pitched roof solutions


### Simple, but incredibly effective.

As a traditional method of building construction, pitched roof systems remain a popular solution in the 21st century owing to the versatility they afford to create additional space, require low maintenance and have a long life span. Insulating the loft space of a pitched roof is one of the most cost effective and efficient ways to improve the energy performance of a property and reduce running costs.

Recognising that the insulation requirements of a pitched roof will be determined by how the roof space will be used, ROCKWOOL offers a range of products for installation between the joists, or for high performance systems, both between and over the rafters. Offering more than warmth, using ROCKWOOL for pitched roof insulation also delivers additional peace of mind through its additional advantages of sound protection and exceptional fire resistance.



# Cold pitched roofs



### ROCKWOOL Roll is the ideal loft insulation solution for horizontal loft application.

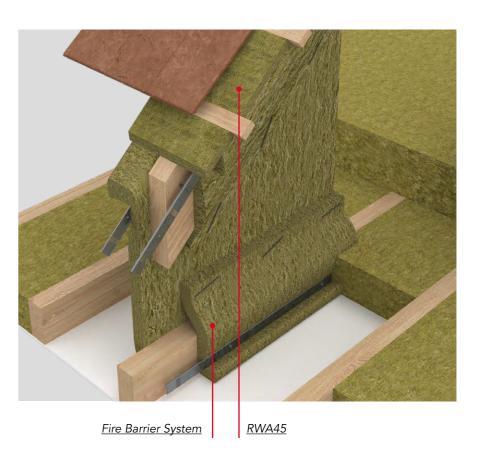
ROCKWOOL Roll is made up of medium density mineral wool insulation. The thermal insulation boasts acoustic properties and is fire resistant, rated A1 Euroclass non-combustible. The insulation solution is suitable for horizontal roof application in all building types, or can be used as an acoustic absorber in suspended ceilings.



Roll, Twin Roll & Rollbatt is Euroclass A1 non-combustible.



• Non directional, stone wool fibres absorb soundwaves and dampen vibration.




| U-value<br>(W/m²K) | ROCKWOOL Roll<br>between joists (mm) | ROCKWOOL Roll<br>over joists (mm) | Total insulation thickness<br>(mm) |
|--------------------|--------------------------------------|-----------------------------------|------------------------------------|
| 0.17               | 100                                  | 150                               | 250                                |
| 0.16               | 100                                  | 170                               | 270                                |
| 0.14               | 100                                  | 200                               | 300                                |
| 0.12               | 100                                  | 250                               | 350                                |
| 0.11               | 100                                  | 300                               | 400                                |

### Fire Barrier System



Fire Barrier systems can be used to prevent the spread of fire and smoke in pitched roof spaces.



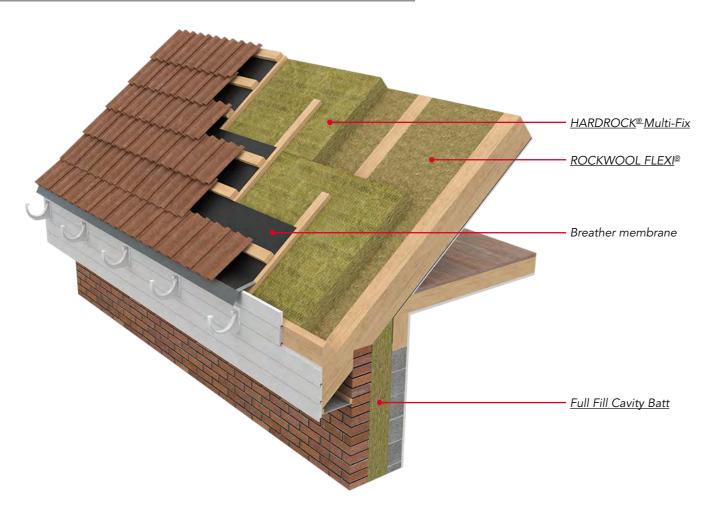
### Standards & approvals

| Product                   | CE<br>marking | Reaction<br>to fire | Fire<br>resistance                                  | 3rd party<br>certification |
|---------------------------|---------------|---------------------|-----------------------------------------------------|----------------------------|
| Roll, Twin Roll, Rollbatt | 1             | Euroclass A1        | -                                                   | -                          |
| Fire Barrier System       | -             | Euroclass A1        | Integrity: Up to 60mins<br>Insulation: Up to 60mins | LPCB<br>(Certificate 022c) |

### Product specification

| Product             | NBS Clauses                                                  | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|---------------------|--------------------------------------------------------------|-------------|------------|-----------------------------------|
| Roll                | P10-125, P10-135,<br>P10-140, P10-170,                       | 3650        | 1200       |                                   |
| Twin Roll           | P10-190, P10-217,<br>P10-220, P10-240,                       | 2750        | 1200       | 100-220                           |
| Rollbatt            | P10-250                                                      | 3650, 4800  | 400, 600   |                                   |
| Fire Barrier System | K10-530, K10-545,<br>K40 - 287, P10-410,<br>P10-430, P10-440 | 3500, 4000  | 1000       | 50-60                             |

<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.com/uk


#### BIM objects





Roll
Fire Barrier

# Warm pitched roofs



#### ROCKWOOL ROCKFALL® insulation is compatible with all types of pitched roof systems.

ROCKFALL® has been specially designed as an over rafter mineral wool insulation system for warm pitched roofs and habitable lofts. The solution is made up of HARDROCK® Multi-Fix (DD) Overlay Boards that are mechanically fixed over the rafters, ROCKWOOL FLEXI® is then fitted between the rafters.



 HARDROCK® Multi-Fix DD has a Euroclass rating of A2-s1, d0 and ROCKWOOL FLEXI is Euroclass A1.



Reduces external noise from rain, aircraft, road and rail.



| U-value<br>(W/m²K) | HARDROCK® Multi-Fix<br>over rafters (mm) | ROCKWOOL FLEXI®<br>between rafters (mm) |
|--------------------|------------------------------------------|-----------------------------------------|
| 0.21               | 85                                       | 100                                     |
| 0.17               | 85                                       | 140                                     |
| 0.15               | 85                                       | 180                                     |
| 0.14               | 85                                       | 200                                     |
| 0.13               | 85                                       | 220                                     |

#### Wall & floor solutions

ROCKWOOL FLEXI® provides a single solution for multiple warm pitched roof applications.



### Standards & approvals

| Product             | CE<br>marking | Reaction<br>to fire | Fire<br>resistance | 3rd party<br>certification |
|---------------------|---------------|---------------------|--------------------|----------------------------|
| ROCKWOOL FLEXI®     | 1             | Euroclass A1        | 60 minute floor    | LPCB<br>(Certificate 022e) |
| HARDROCK® Multi-Fix | 1             | Euroclass A2-s1, d0 | -                  | LPCB<br>(Certificate 022e) |

#### Product specification

| Product             | NBS Clauses                                                                                                                                                                                          | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-----------------------------------|
| ROCKWOOL FLEXI®     | K10-115, K10-125<br>K10-145, K10-155<br>K10-165, K10-215<br>K11-115, K11-125<br>K11-135, K11-145<br>K11-795, K11-796<br>K20-150, K21-120<br>K21-130, K21-140<br>P10-140, P10-170<br>P10-240, P10-250 | 1200        | 400, 600   | 50-200                            |
| HARDROCK® Multi-Fix | J21-425, J31-334<br>J41-425, J42-425<br>K11-695                                                                                                                                                      | 1000        | 1200       | 60-185                            |

<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit <a href="www.rockwool.com/uk">www.rockwool.com/uk</a>

#### BIM objects



HARDROCK® Multi-Fix

# Floor solutions

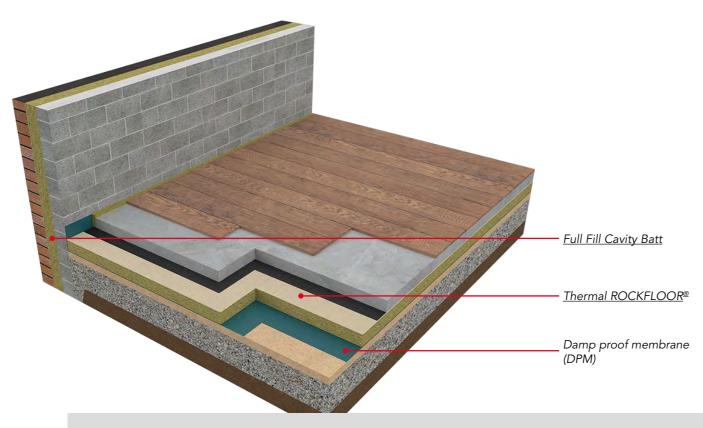
#### Create comfortable interiors with confidence.

With a ROCKWOOL flooring solution for every application, specifiers can create comfortable interiors with confidence.


As high-rise living and buildings with multipleoccupancy become increasingly common, acoustic performance of intermediate and separating floors is key in design criteria and specifications.

The natural acoustic performance of ROCKWOOL effectively reduces the passage of sound within and between dwellings - contributing to a peaceful and calm environment that promotes health and wellbeing.

Energy efficiency is becoming more of a focus in UK construction, which means the thermal performance of ground floors is coming to the fore in sustainable design criteria and specifications.


When insulating ground floor slabs, ROCKWOOL flooring solutions help to improve the overall U-value rating of a building while separating and suspended floors benefit from high levels of thermal performance to help regulate interior temperatures – creating a comfortable indoor climate for building occupants.

ROCKWOOL flooring solutions are easy to install with the tight joints reducing both sound flanking and heat



# Ground floors

Ground bearing slab

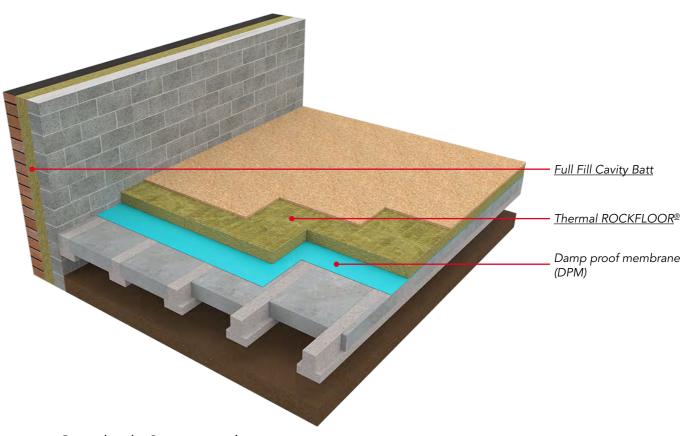


Thermal ROCKFLOOR® is a dual density thermal insulation solution designed for ground floor slab or suspended concrete beam and block floor applications.

Thermal ROCKFLOOR® can be installed below concrete slab or screed and is also suitable for use under most timber floor surfaces including; flooring grade T&G chipboard, OSB or plywood. The dual density layers allow for unevenness and imperfections on the sub-floor surface to be absorbed, while the high density upper layer provides the required load resistance.



Thermal ROCKFLOOR® achieves Euroclass A1 fire resistance.




|           | Thermal ROCKFLOOR® *thickness required (mm) |                        |                     |                        |                     |                        |                     |                        |                     |                        |
|-----------|---------------------------------------------|------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|------------------------|
| U-value   | 0.                                          | 22                     | 0                   | .2                     | 0.                  | 18                     | 0.                  | 15                     | 0.                  | 13                     |
| P/A Ratio | Ground <sup>1</sup>                         | Suspended <sup>2</sup> | Ground <sup>1</sup> | Suspended <sup>2</sup> | Ground <sup>1</sup> | Suspended <sup>2</sup> | Ground <sup>1</sup> | Suspended <sup>2</sup> | Ground <sup>1</sup> | Suspended <sup>2</sup> |
| 0.1       | 0                                           | 30                     | 0                   | 50                     | 0                   | 65                     | 40                  | 110                    | 70                  | 150                    |
| 0.2       | 50                                          | 80                     | 65                  | 100                    | 85                  | 120                    | 120                 | 160                    | 160                 | 200                    |
| 0.3       | 80                                          | 100                    | 95                  | 120                    | 115                 | 140                    | 150                 | 180                    | 190                 | 210                    |
| 0.4       | 95                                          | 115                    | 110                 | 130                    | 130                 | 150                    | 170                 | 190                    | 210                 | 230                    |
| 0.5       | 100                                         | 120                    | 120                 | 135                    | 150                 | 160                    | 180                 | 200                    | 220                 | 230                    |
| 0.7       | 115                                         | 125                    | 135                 | 145                    | 155                 | 165                    | 195                 | 200                    | 230                 | 245                    |
| 0.9       | 125                                         | 130                    | 140                 | 150                    | 160                 | 165                    | 200                 | 210                    | 235                 | 245                    |

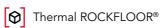
<sup>\*</sup>The thicknesses quoted may be subject to minimum production volumes. Please contact ROCKWOOL Technical Support to discuss specifications that require thicknesses above 200mm.

# Ground floors

Suspended beam & block



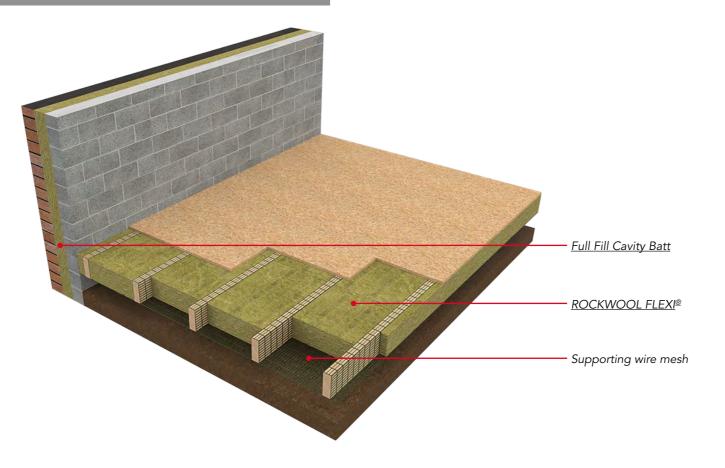
### Standards & approvals


| Product            | CE<br>marking | Reaction<br>to fire |
|--------------------|---------------|---------------------|
| Thermal ROCKFLOOR® | ✓             | Euroclass A1        |

### Product specification

| Product            | NBS Clauses                                                               | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|--------------------|---------------------------------------------------------------------------|-------------|------------|-----------------------------------|
| Thermal ROCKFLOOR® | E20-200<br>K11-215<br>K11-225<br>K11-235<br>K11-245<br>M10-290<br>M13-260 | 1000        | 600        | 50-185                            |

<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.com/uk


### BIM objects



 $<sup>^{1}65</sup>$ mm screed, 150mm medium density (2000kg/m³) concrete, DPM  $^{2}18$ mm chipboard, 100mm beam & block

# Ground floors

Suspended timber



### ROCKWOOL FLEXI® provides thermal insulation for suspended timber floors.

The flexible edge enables a tight friction fit that eliminates gaps; reducing thermal bridging and cold spots.



ROCKWOOL FLEXI® achieves Euroclass A1 fire resistance.



| U-value   | ROCKWOOL FLEXI® *thickness required (mm) <sup>1</sup> |     |      |      |      |  |
|-----------|-------------------------------------------------------|-----|------|------|------|--|
| P/A Ratio | 0.22                                                  | 0.2 | 0.18 | 0.15 | 0.13 |  |
| 0.1       | 30                                                    | 50  | 70   | 120  | 160  |  |
| 0.2       | 100                                                   | 120 | 140  | 190  | 230  |  |
| 0.3       | 120                                                   | 140 | 160  | 220  | 260  |  |
| 0.4       | 130                                                   | 155 | 180  | 230  | 280  |  |
| 0.5       | 140                                                   | 160 | 190  | 230  | 280  |  |
| 0.7       | 150                                                   | 175 | 200  | 250  | 285  |  |
| 0.9       | 160                                                   | 180 | 210  | 250  | 310  |  |

<sup>\*</sup>The thicknesses quoted may be subject to minimum production volumes.

#### Standards & approvals

| Product         | CE<br>marking | Reaction<br>to fire | Fire<br>resistance | 3rd party<br>certification |
|-----------------|---------------|---------------------|--------------------|----------------------------|
| ROCKWOOL FLEXI® | 1             | Euroclass A1        | -                  | LPCB (Certificate 022e)    |

### Product specification

| Product         | NBS Clauses                                                                                     | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|-----------------|-------------------------------------------------------------------------------------------------|-------------|------------|-----------------------------------|
| ROCKWOOL FLEXI® | K11-115<br>K11-125<br>K11-135<br>K11-145<br>K20-150<br>K21-120<br>K21-130<br>K21-140<br>P10-240 | 1200        | 400 & 600  | 50-200                            |

<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.com/uk

#### BIM objects



# Creating resilient timber frame buildings

Timber frame construction is at the forefront of design innovation in the construction industry.

This CPD assesses the HSE Fire Safety during Construction guidance (HSG 168) in detail, and reviews testing carried out by ROCKWOOL that enables mitigation of fire risk during construction and allows buildings to be constructed closer together on site.





<sup>&</sup>lt;sup>1</sup>18mm chipboard, timber joists at 400mm centres.

# Separating floors

Acoustic timber



ROCKWOOL FLEXI® and Acoustic ROCKFLOOR® can be used in isolation or combined to provide high levels of airborne and impact sound reduction within separating floor structures.

In addition, the combination of the two products also provides a non-combustible barrier that can reduce the spread of fire between floors.



ROCKWOOL FLEXI® achieves Euroclass A1 fire resistance



| Example specification                      | Performance                                      |
|--------------------------------------------|--------------------------------------------------|
| 18mm T&G chipboard                         |                                                  |
| 15mm Plasterboard (13kg/m²)                | Airborne Sound Reduction                         |
| 30mm Acoustic ROCKFLOOR®                   | RW (C;Ctr) = 66 (-5; 12) dB                      |
| 15mm OSB                                   | luce and Council Designation                     |
| 100mm ROCKWOOL FLEXI®                      | Impact Sound Reduction $L_{n,w} = 58 \text{ dB}$ |
| Resilient bars at 400mm centres            | L <sub>n,w</sub> = 30 dB                         |
| Two layers of 15mm Plasterboard (26/kg/m²) |                                                  |

#### Acoustic timber floor with resilient bars



#### Standards & approvals

| Product             | CE<br>marking | Reaction<br>to fire | Fire<br>resistance | 3rd party<br>certification |
|---------------------|---------------|---------------------|--------------------|----------------------------|
| Acoustic ROCKFLOOR® | 1             | Euroclass A1        | -                  | -                          |
| ROCKWOOL FLEXI®     | 1             | Euroclass A1        | -                  | LPCB (Certificate 022e)    |

#### Product specification

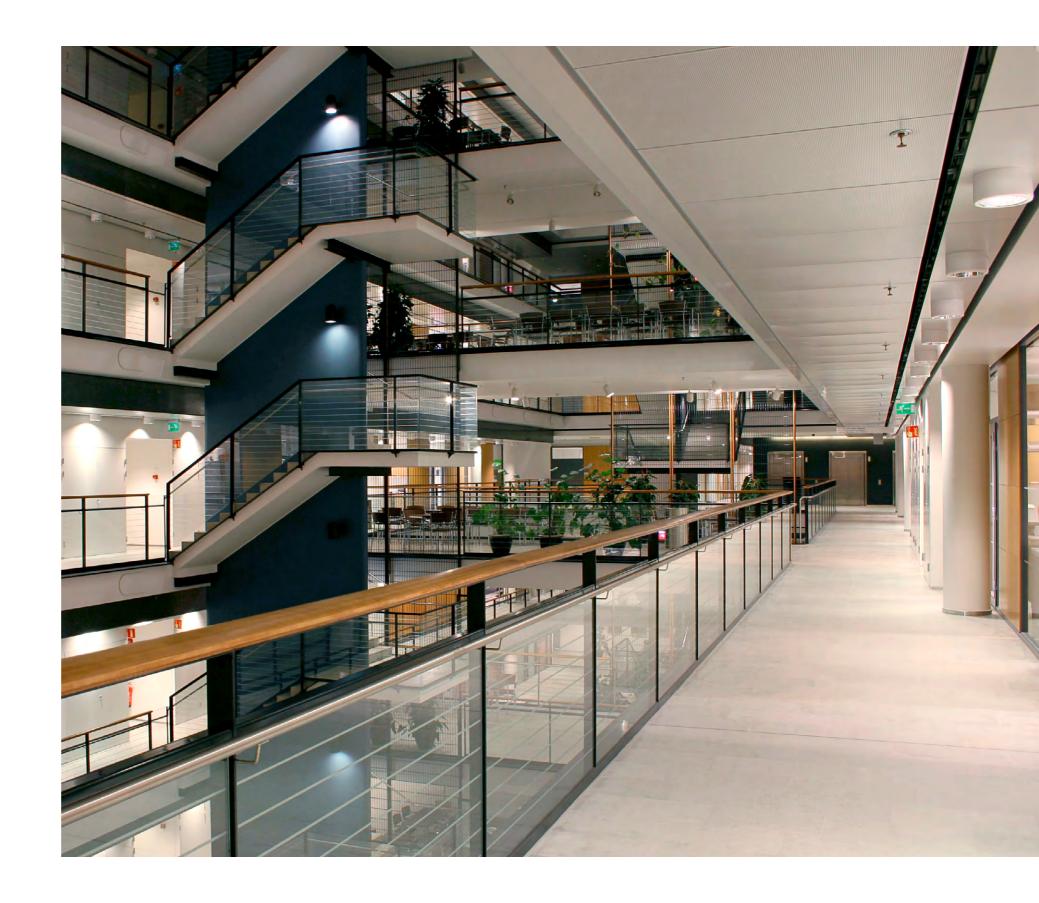
| Product             | NBS Clauses                                                                                      | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|---------------------|--------------------------------------------------------------------------------------------------|-------------|------------|-----------------------------------|
| Acoustic ROCKFLOOR® | K11-215, K11-225<br>K11-235, K11-245<br>K21-111, K21-115<br>K21-145, K21-146<br>M10-290, M13-260 | 1000        | 600        | 25-50                             |
| ROCKWOOL FLEXI®     | K11-115, K11-125<br>K11-135, K11-145<br>K20-150, K21-120<br>K21-130, K21-140<br>P10-240          | 1200        | 400 & 600  | 50-200                            |

<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.com/uk

### BIM objects

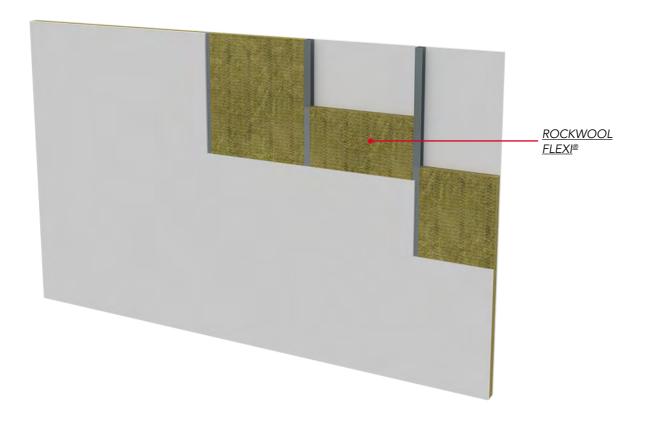
Acoustic ROCKFLOOR®

ROCKWOOL FLEXI®


# Internal walls and floors

Reduce noise and protect people with a single specification.

Applying ROCKWOOL stone wool insulation to the core of internal partitions and floors supports in improving noise reduction by significantly increasing sound absorption, meaning that even the noisiest areas sound


As non-combustible insulation, specifying ROCKWOOL internal wall and floor solutions offers increased peace of mind by helping to reduce the spread of fire protecting people and property.

Extremely easy to handle and install on-site, ROCKWOOL internal wall and floor solutions help to protect the integrity of design by minimising risk of installation error on-site.



# Internal walls and floors

Timber and metal stud



ROCKWOOL FLEXI® delivers exceptional acoustic performance due to its density and non-directional fibre orientation which traps sound waves and dampens vibration.

Made from non-combustible stone wool ROCKWOOL FLEXI® is capable of withstanding temperatures up to 1000°C.



ROCKWOOL FLEXI® achieves Euroclass A1 fire resistance



#### Tested solutions

| Internal wall<br>(Test report: AIRO L/1944/A/5 (RTP03))                           | Internal floor<br>(Test report: L03-264)                    | Performance                            |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|
| 75 x 44mm timber stud                                                             | 18mm T&G chipboard                                          |                                        |
| 50mm ROCKWOOL FLEXI® between studs                                                | 100mm ROCKWOOL FLEXI® between timber joists (400mm centres) | Sound Reduction<br>R <sub>w</sub> 40dB |
| One layer of 12.5mm standard plasterboard (min 8.4kg/m²) to each side of the wall | Standard 12.5mm plasterboard<br>(8.4kg/m²)                  |                                        |



### Standards & approvals

| Product         | CE      | Reaction     | Fire       | 3rd party               |
|-----------------|---------|--------------|------------|-------------------------|
|                 | marking | to fire      | resistance | certification           |
| ROCKWOOL FLEXI® | ✓       | Euroclass A1 | -          | LPCB (Certificate 022e) |

### Product specification

| Product         | NBS Clauses                                                               | Length (mm) | Width (mm) | *Approved thickness<br>range (mm) |
|-----------------|---------------------------------------------------------------------------|-------------|------------|-----------------------------------|
| ROCKWOOL FLEXI® | K10-115<br>K10-125<br>K10-145<br>K10-155<br>K10-165<br>K11-795<br>K11-796 | 1200        | 400 & 600  | 50-200                            |

<sup>\*</sup>Thickness options may be subject to a minimum production volume. For further information on our standard thickness range please visit www.rockwool.com/uk

### BIM objects

ROCKWOOL FLEXI®

74 ROCKWOOL Red Book 75

## Case study



Client:

Aneurin Bevan Health Board

Architect:

Main contractor: Laing O'Rourke

Façade contractor:

Central Roofing South Wales Ltd

Merchant:

SIG Bristol



Case study

Cobham Free School

Surrey

[>]



Client:

Cobham Free School

Architect:

Stride Treglown

Main contractor:

Willmott Dixon Construction

Roofing contractor:

Southern Industrial Roofing



# The CPD programme

We've used our knowledge and technical expertise to create informative and enjoyable CPDs. Each CPD has been designed to explain the unique benefits of stone wool insulation, its suitability for the built environment and the design freedom that can be achieved.

The essential CPD programme for construction professionals includes:



#### A guide to HVAC standards & applications

This CPD focusses on providing an understanding of the standards and guidance relating to the HVAC industry in addition to total insulation solution applications to provide the comfort, health and safety to buildings which need to be firestopped.



This CPD will look at the guidance issued in detail and review testing carried out by ROCKWOOL to mitigate fire risk during construction.





#### **NEW HVAC CPD:** EN tested fire duct systems

Our new HVAC CPD provides information and guidance on the latest BS EN test standards and harmonised product standards for fire duct systems.



Learn about product combustibility and Euroclass ratings, how these relate to Approved Document B and Routes to Compliance on High Rise and High Risk Buildings.



#### Building envelope

This session looks at the use of non-combustible beyond the façade, highlighting key areas where non-combustible insulation can easily be incorporated.

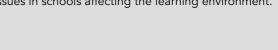




#### Compartmentation

Explaining the key differences between reaction to fire and fire resistance, the session aims to provide a basic understanding of compartmentation and firestopping within a building.

#### Fire safety of buildings above 18m: Designing out risks


This CPD will take an in depth look at how to comply with fire safety performance within rainscreen systems that are designed for buildings above 18 metres.





#### Acoustic standards in schools

This CPD addresses the noise and poor acoustic issues in schools affecting the learning environment.



#### The Fifth Facade

Guidance on mitigating the risk of spread within flat roof systems.



To arrange a CPD session or to learn more about the

topics covered, please visit www.rockwool.com/uk/cpd

# ROCKWOOL Resource Hubs...

Digital specification support for insulation applications.

Responding to the increased demand for online specification materials, ROCKWOOL has launched a series of application-focused digital hubs that make it easier to navigate routes to compliance and design buildings that perform.

Mapped to key insulation application areas, the ROCKWOOL Resource Hubs provide access to technical tools, data, guidance and installation support all in one place:



When specifying FIREPRO® products, the suite of resources provides guidance on all things passive fire protection



#### Ventilated Façade

Bringing together all relevant technical literature, the resource hub helps specifiers to navigate routes to compliance when using ventilated facades.



Helping to better understand the role of building acoustics, specialist acoustics resources for creating safe and sound environments can be found here.



A comprehensive suite of resources designed to save time and make it easier to deliver robust project specifications



Support the design of flat roof insulation with specialist tools, guidance and technical data.



#### Social Housing

Putting all the key resources, information and case studies for social housing projects together in one place - as well as useful links to further social housing resources.

#### **Explore the ROCKWOOL Resource Hubs now:**

www.rockwool.com/uk/knowledge-hub

Use the Resource Hubs to identify the right non-combustible stone wool insulation products for specific applications.

# **DISCOVER THE ROCKWOOL INTERACTIVE** CITY

## A virtual world of **ROCKWOOL** solutions

Developed to inspire building design, save time and lead to smoother, faster decision-making, the ROCKWOOL Interactive City takes visualising, specifying and learning about our stone wool insulation to the next level.

#### IN THE CITY, YOU CAN...



Explore the whole of the built environment from housing to transport hubs in a single state-of-the-art 3D space



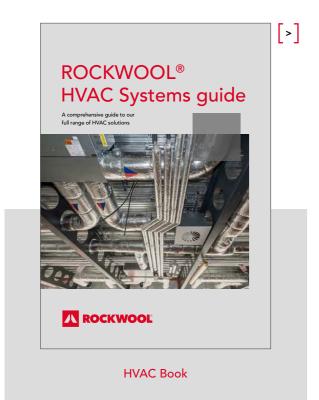
Understand how stone wool insulation improves thermal, acoustic and fire performance, including in applications you might not expect

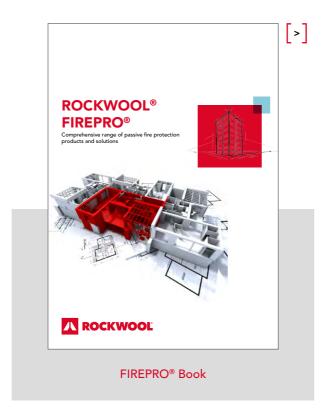


Pan, zoom and rotate 3D views of substrate build-ups for a virtual hands-on experience



Access product documentation, installation guides and BIM objects with a click





Discover the city at:

www.rockwool.com/uk/ interactive-city

## Additional resources

The ROCKWOOL Red Book is part of a suite of specialist guides. The following are also available to support the specification of ROCKWOOL solutions in HVAC and fire protection applications:





All supporting product documentation for solutions detailed in the Red Book is available to download from the ROCKWOOL website, including:

- Product Datasheets
- Material Safety Datasheets
- Brochures
- Reports
- Price Lists
- Certificates

Register now at www.rockwool.com/uk to receive the latest technical updates.

#### Share your feedback

Is the ROCKWOOL Red Book providing you with the specification support you need?

Let us know how we can improve the content:  $\underline{\text{\bf go.rockwool.com/redbook-feedback}}$ 



#### Legal disclaimer

#### The ROCKWOOL Trademark

ROCKWOOL® - our trademark

The ROCKWOOL trademark was initially registered in Denmark as a logo mark back in 1936. In 1937, it was accompanied with a word mark registration; a registration which is now extended to more than 60 countries around the word.

The ROCKWOOL trademark is one of the largest assets in the ROCKWOOL Group, and thus well protected and defended by us throughout the world.

If you require permission to use the ROCKWOOL logo for your business, advertising or promotion. You must apply for a Trade Mark Usage Agreement. To apply, write to: marketcom@rockwool.com.

#### **Trademarks**

The following are registered trademarks of the ROCKWOOL Group: ROCKWOOL®, ROCKCLOSE®, RAINSCREEN DUO SLAB®, HARDROCK®, ROCKFLOOR® FLEXI®, ROCKFALL®

#### Disclaimer

ROCKWOOL Limited reserves the right to alter or amend the specification of products without notice as our policy is one of constant improvement. The information contained in this brochure is believed to be correct at the date of publication. Whilst ROCKWOOL will endeavour to keep its publications up to date, readers will appreciate that between publications there may be pertinent changes in the law, or other developments affecting the accuracy of the information contained in this brochure. The applications referred to within the brochure do not necessarily represent an exhaustive list of applications. ROCKWOOL Limited does not accept responsibility for the consequences of using ROCKWOOL in applications different from those described within this brochure. Expert advice should be sought where such different applications are contemplated, or where the extent of any listed application is in doubt.

© ROCKWOOL 2020. All rights reserved.

#### Photography and illustrations

The product illustrations are the property of ROCKWOOL ltd and have been created for indicative purposes only.

Unless indicated below, the photography and illustrations used in this guide are the property of ROCKWOOL Limited. We reserve all rights to the usage of these images.

If you require permission to use ROCKWOOL images, you must apply for a Usage Agreement. To apply, write to: <a href="marketcom@rockwool.com">marketcom@rockwool.com</a>.

- Page 1: Offset Shutterstock
- Page 4: Shutterstock
- Page 13: Offset Shutterstock
- Page 14: Pavel L Photo and Video
- Page 17: Shutterstock
- Page 21: iStock
- Page 23: Svend Christensen
- Page 27: Shutterstock
- Page 35: Rockpanel
- Page 59: iStock
- Page 65: iStock
- Page 69: Shutterstock
- Page 78: Shutterstock
- Page 83: Mint Images Paul Edmondson



January 2022

ROCKWOOL Limited

Pencoed Bridgend CF35 6NY

Tel: 01656 862 621 info@rockwool.com www.rockwool.com/uk





